org.metacsp.utility.Gaussian Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of meta-csp-framework Show documentation
Show all versions of meta-csp-framework Show documentation
A Java API for Meta-CSP based reasoning
package org.metacsp.utility;
/******************************************************************************
* Compilation: javac Gaussian.java
* Execution: java Gaussian x mu sigma
*
* Function to compute the Gaussian pdf (probability density function)
* and the Gaussian cdf (cumulative density function)
*
* % java Gaussian 820 1019 209
* 0.17050966869132111
*
* % java Gaussian 1500 1019 209
* 0.9893164837383883
*
* % java Gaussian 1500 1025 231
* 0.9801220907365489
*
* The approximation is accurate to absolute error less than 8 * 10^(-16).
* Reference: Evaluating the Normal Distribution by George Marsaglia.
* http://www.jstatsoft.org/v11/a04/paper
*
******************************************************************************/
public class Gaussian {
/**
* Returns phi(x) = standard Gaussian pdf
* @param x
* @return
*/
public static double phi(double x) {
return Math.exp(-x*x / 2) / Math.sqrt(2 * Math.PI);
}
/**
* Returns phi(x, mu, signma) = Gaussian pdf with mean mu and stddev sigma
* @param x
* @param mu
* @param sigma
* @return
*/
public static double phi(double x, double mu, double sigma) {
return phi((x - mu) / sigma) / sigma;
}
/**
* Returns Phi(z) = standard Gaussian cdf using Taylor approximation
* @param z
* @return
*/
public static double Phi(double z) {
if (z < -8.0) return 0.0;
if (z > 8.0) return 1.0;
double sum = 0.0, term = z;
for (int i = 3; sum + term != sum; i += 2) {
sum = sum + term;
term = term * z * z / i;
}
return 0.5 + sum * phi(z);
}
/**
* Returns Phi(z, mu, sigma) = Gaussian cdf with mean mu and stddev sigma
* @param z
* @param mu
* @param sigma
* @return
*/
public static double Phi(double z, double mu, double sigma) {
return Phi((z - mu) / sigma);
}
/**
* Computes z such that Phi(z) = y via bisection search
* @param y
* @return
*/
public static double PhiInverse(double y) {
return PhiInverse(y, .00000001, -8, 8);
}
// bisection search
private static double PhiInverse(double y, double delta, double lo, double hi) {
double mid = lo + (hi - lo) / 2;
if (hi - lo < delta) return mid;
if (Phi(mid) > y) return PhiInverse(y, delta, lo, mid);
else return PhiInverse(y, delta, mid, hi);
}
// test client
public static void main(String[] args) {
double z = Double.parseDouble(args[0]);
double mu = Double.parseDouble(args[1]);
double sigma = Double.parseDouble(args[2]);
System.out.println(Phi(z, mu, sigma));
double y = Phi(z);
System.out.println(PhiInverse(y));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy