All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.metacsp.meta.fuzzyActivity.FuzzyActivityMetaSolver Maven / Gradle / Ivy

There is a newer version: 1.3.5
Show newest version
/*******************************************************************************
 * Copyright (c) 2010-2013 Federico Pecora 
 * 
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 * 
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 ******************************************************************************/
package org.metacsp.meta.fuzzyActivity;

import java.util.Vector;

import org.metacsp.framework.Constraint;
import org.metacsp.framework.ConstraintNetwork;
import org.metacsp.framework.meta.MetaConstraintSolver;
import org.metacsp.framework.meta.MetaVariable;
import org.metacsp.fuzzyAllenInterval.FuzzyAllenIntervalConstraint;
import org.metacsp.fuzzyAllenInterval.FuzzyAllenIntervalNetworkSolver;
import org.metacsp.fuzzySymbols.FuzzySymbolicVariableConstraintSolver;
import org.metacsp.multi.fuzzyActivity.FuzzyActivity;
import org.metacsp.multi.fuzzyActivity.FuzzyActivityNetworkSolver;
import org.metacsp.multi.symbols.SymbolicValueConstraint;

/**
 * Provides a meta-CSP implementation of fuzzy context inference.  The solver
 * combines fuzzy symbolic inference and fuzzy temporal inference.  The former
 * is provided by a {@link FuzzySymbolicVariableConstraintSolver}, while the latter is
 * provided by a {@link FuzzyAllenIntervalNetworkSolver} (see {@link FuzzyActivityNetworkSolver}).
 * 
 * 
* This solver uses Branch-and-Bound search to find the optimal unifications of * rules to existing {@link FuzzyActivity} variables (see {@link FuzzyActivityDomain}). * * @author Federico Pecora, Masoumeh Mansouri */ public class FuzzyActivityMetaSolver extends MetaConstraintSolver { private static final long serialVersionUID = -3342951089757068845L; private double upperBound = 0; private double lowerBound = 0; private double tmpLoweBound = 0; private ConstraintNetwork cn; private ConstraintNetwork optCn; private double valueConsistency = 0; private double temporalConsistency = 0; private double vcTmp = 0; private double tcTmp = 0; public FuzzyActivityMetaSolver(long animationTime) { super(new Class[]{FuzzyAllenIntervalConstraint.class, SymbolicValueConstraint.class}, animationTime, new FuzzyActivityNetworkSolver()); } @Override public void preBacktrack() { // TODO Auto-generated method stub } @Override public void postBacktrack(MetaVariable mv) { // TODO Auto-generated method stub } @Override protected void retractResolverSub(ConstraintNetwork metaVariable, ConstraintNetwork metaValue) { //FuzzyActivityNetworkSolver groundSolver = (FuzzyActivityNetworkSolver)((FuzzyActivityDomain)this.domainFeatures.get(0)).getConstraintSolver(); // Vector toRemove = new Vector(); // for (Variable v : metaValue.getVariables()) // if (!metaVariable.containsVariable(v)) // toRemove.add(v); //((FuzzyActivityDomain)this.metaConstraints.get(0)).removeFromNetwork(metaVariable, toRemove); ((FuzzyActivityDomain)this.metaConstraints.get(0)).setUnjustified(metaVariable); } @Override protected boolean addResolverSub(ConstraintNetwork metaVariable, ConstraintNetwork metaValue) { return true; } @Override protected double getUpperBound() { // TODO Auto-generated method stub return this.upperBound; } @Override protected void setUpperBound() { this.upperBound = ((FuzzyActivityDomain)this.metaConstraints.get(0)).getConsitency(); cn = ((FuzzyActivityDomain)this.metaConstraints.get(0)).getConstraintNetwork(); vcTmp = ((FuzzyActivityDomain)this.metaConstraints.get(0)).getValueConsistency(); tcTmp = ((FuzzyActivityDomain)this.metaConstraints.get(0)).getTemporalConsistency(); tmpLoweBound = upperBound; } @Override protected double getLowerBound() { return this.lowerBound; } @Override protected void setLowerBound() { if(tmpLoweBound > lowerBound){ this.lowerBound = tmpLoweBound; optCn = cn; valueConsistency = vcTmp; temporalConsistency = tcTmp; System.out.println("getLowebound: " + lowerBound); //System.out.println("optCn: " + optCn); } System.out.println("..........................................................."); } @Override protected boolean hasConflictClause(ConstraintNetwork metaValue){ Vector cons = new Vector(); cons = ((FuzzyActivityDomain)this.metaConstraints.get(0)).getFalseClause(); for (int i = 0; i < metaValue.getConstraints().length; i++) { for (int j = 0; j < cons.size(); j++) { if(isAFalseClause(metaValue.getConstraints()[i], cons.get(j))) return true; } } return false; } @Override protected void resetFalseClause(){ ((FuzzyActivityDomain)this.metaConstraints.get(0)).resetFalseClause(); } private boolean isAFalseClause(Constraint c1, Constraint c2) { if((c1.getScope()[0].getID() == c2.getScope()[0].getID()) && (c1.getScope()[1].getID() == c2.getScope()[1].getID())) return true; if((c1.getScope()[0].getID() == c2.getScope()[1].getID()) && (c1.getScope()[0].getID() == c2.getScope()[1].getID())) return true; return false; } public ConstraintNetwork getOptimalConstraint() { return optCn; } public String getMostLiklyOccuredActivities(){ String str = ((FuzzyActivityDomain)this.metaConstraints.get(0)).getOptimalHypothesis(optCn, valueConsistency, temporalConsistency); return str; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy