org.mini2Dx.gdx.math.BSpline Maven / Gradle / Ivy
/*******************************************************************************
* Copyright 2011 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
package org.mini2Dx.gdx.math;
import org.mini2Dx.gdx.utils.Array;
/** @author Xoppa */
public class BSpline> implements Path {
private final static float d6 = 1f / 6f;
/** Calculates the cubic b-spline value for the given position (t).
* @param out The Vector to set to the result.
* @param t The position (0<=t<=1) on the spline
* @param points The control points
* @param continuous If true the b-spline restarts at 0 when reaching 1
* @param tmp A temporary vector used for the calculation
* @return The value of out */
public static > T cubic (final T out, final float t, final T[] points, final boolean continuous,
final T tmp) {
final int n = continuous ? points.length : points.length - 3;
float u = t * n;
int i = (t >= 1f) ? (n - 1) : (int)u;
u -= i;
return cubic(out, i, u, points, continuous, tmp);
}
/** Calculates the cubic b-spline derivative for the given position (t).
* @param out The Vector to set to the result.
* @param t The position (0<=t<=1) on the spline
* @param points The control points
* @param continuous If true the b-spline restarts at 0 when reaching 1
* @param tmp A temporary vector used for the calculation
* @return The value of out */
public static > T cubic_derivative (final T out, final float t, final T[] points,
final boolean continuous, final T tmp) {
final int n = continuous ? points.length : points.length - 3;
float u = t * n;
int i = (t >= 1f) ? (n - 1) : (int)u;
u -= i;
return cubic(out, i, u, points, continuous, tmp);
}
/** Calculates the cubic b-spline value for the given span (i) at the given position (u).
* @param out The Vector to set to the result.
* @param i The span (0<=i> T cubic (final T out, final int i, final float u, final T[] points,
final boolean continuous, final T tmp) {
final int n = points.length;
final float dt = 1f - u;
final float t2 = u * u;
final float t3 = t2 * u;
out.set(points[i]).scl((3f * t3 - 6f * t2 + 4f) * d6);
if (continuous || i > 0) out.add(tmp.set(points[(n + i - 1) % n]).scl(dt * dt * dt * d6));
if (continuous || i < (n - 1)) out.add(tmp.set(points[(i + 1) % n]).scl((-3f * t3 + 3f * t2 + 3f * u + 1f) * d6));
if (continuous || i < (n - 2)) out.add(tmp.set(points[(i + 2) % n]).scl(t3 * d6));
return out;
}
/** Calculates the cubic b-spline derivative for the given span (i) at the given position (u).
* @param out The Vector to set to the result.
* @param i The span (0<=i> T cubic_derivative (final T out, final int i, final float u, final T[] points,
final boolean continuous, final T tmp) {
final int n = points.length;
final float dt = 1f - u;
final float t2 = u * u;
final float t3 = t2 * u;
out.set(points[i]).scl(1.5f * t2 - 2 * u);
if (continuous || i > 0) out.add(tmp.set(points[(n + i - 1) % n]).scl(-0.5f * dt * dt));
if (continuous || i < (n - 1)) out.add(tmp.set(points[(i + 1) % n]).scl(-1.5f * t2 + u + 0.5f));
if (continuous || i < (n - 2)) out.add(tmp.set(points[(i + 2) % n]).scl(0.5f * t2));
return out;
}
/** Calculates the n-degree b-spline value for the given position (t).
* @param out The Vector to set to the result.
* @param t The position (0<=t<=1) on the spline
* @param points The control points
* @param degree The degree of the b-spline
* @param continuous If true the b-spline restarts at 0 when reaching 1
* @param tmp A temporary vector used for the calculation
* @return The value of out */
public static > T calculate (final T out, final float t, final T[] points, final int degree,
final boolean continuous, final T tmp) {
final int n = continuous ? points.length : points.length - degree;
float u = t * n;
int i = (t >= 1f) ? (n - 1) : (int)u;
u -= i;
return calculate(out, i, u, points, degree, continuous, tmp);
}
/** Calculates the n-degree b-spline derivative for the given position (t).
* @param out The Vector to set to the result.
* @param t The position (0<=t<=1) on the spline
* @param points The control points
* @param degree The degree of the b-spline
* @param continuous If true the b-spline restarts at 0 when reaching 1
* @param tmp A temporary vector used for the calculation
* @return The value of out */
public static > T derivative (final T out, final float t, final T[] points, final int degree,
final boolean continuous, final T tmp) {
final int n = continuous ? points.length : points.length - degree;
float u = t * n;
int i = (t >= 1f) ? (n - 1) : (int)u;
u -= i;
return derivative(out, i, u, points, degree, continuous, tmp);
}
/** Calculates the n-degree b-spline value for the given span (i) at the given position (u).
* @param out The Vector to set to the result.
* @param i The span (0<=i> T calculate (final T out, final int i, final float u, final T[] points, final int degree,
final boolean continuous, final T tmp) {
switch (degree) {
case 3:
return cubic(out, i, u, points, continuous, tmp);
}
return out;
}
/** Calculates the n-degree b-spline derivative for the given span (i) at the given position (u).
* @param out The Vector to set to the result.
* @param i The span (0<=i> T derivative (final T out, final int i, final float u, final T[] points, final int degree,
final boolean continuous, final T tmp) {
switch (degree) {
case 3:
return cubic_derivative(out, i, u, points, continuous, tmp);
}
return out;
}
public T[] controlPoints;
public Array knots;
public int degree;
public boolean continuous;
public int spanCount;
private T tmp;
private T tmp2;
private T tmp3;
public BSpline () {
}
public BSpline (final T[] controlPoints, final int degree, final boolean continuous) {
set(controlPoints, degree, continuous);
}
public BSpline set (final T[] controlPoints, final int degree, final boolean continuous) {
if (tmp == null) tmp = controlPoints[0].cpy();
if (tmp2 == null) tmp2 = controlPoints[0].cpy();
if (tmp3 == null) tmp3 = controlPoints[0].cpy();
this.controlPoints = controlPoints;
this.degree = degree;
this.continuous = continuous;
this.spanCount = continuous ? controlPoints.length : controlPoints.length - degree;
if (knots == null)
knots = new Array(spanCount);
else {
knots.clear();
knots.ensureCapacity(spanCount);
}
for (int i = 0; i < spanCount; i++)
knots.add(calculate(controlPoints[0].cpy(), continuous ? i : (int)(i + 0.5f * degree), 0f, controlPoints, degree,
continuous, tmp));
return this;
}
@Override
public T valueAt (T out, float t) {
final int n = spanCount;
float u = t * n;
int i = (t >= 1f) ? (n - 1) : (int)u;
u -= i;
return valueAt(out, i, u);
}
/** @return The value of the spline at position u of the specified span */
public T valueAt (final T out, final int span, final float u) {
return calculate(out, continuous ? span : (span + (int)(degree * 0.5f)), u, controlPoints, degree, continuous, tmp);
}
@Override
public T derivativeAt (final T out, final float t) {
final int n = spanCount;
float u = t * n;
int i = (t >= 1f) ? (n - 1) : (int)u;
u -= i;
return derivativeAt(out, i, u);
}
/** @return The derivative of the spline at position u of the specified span */
public T derivativeAt (final T out, final int span, final float u) {
return derivative(out, continuous ? span : (span + (int)(degree * 0.5f)), u, controlPoints, degree, continuous, tmp);
}
/** @return The span closest to the specified value */
public int nearest (final T in) {
return nearest(in, 0, spanCount);
}
/** @return The span closest to the specified value, restricting to the specified spans. */
public int nearest (final T in, int start, final int count) {
while (start < 0)
start += spanCount;
int result = start % spanCount;
float dst = in.dst2(knots.get(result));
for (int i = 1; i < count; i++) {
final int idx = (start + i) % spanCount;
final float d = in.dst2(knots.get(idx));
if (d < dst) {
dst = d;
result = idx;
}
}
return result;
}
@Override
public float approximate (T v) {
return approximate(v, nearest(v));
}
public float approximate (final T in, int start, final int count) {
return approximate(in, nearest(in, start, count));
}
public float approximate (final T in, final int near) {
int n = near;
final T nearest = knots.get(n);
final T previous = knots.get(n > 0 ? n - 1 : spanCount - 1);
final T next = knots.get((n + 1) % spanCount);
final float dstPrev2 = in.dst2(previous);
final float dstNext2 = in.dst2(next);
T P1, P2, P3;
if (dstNext2 < dstPrev2) {
P1 = nearest;
P2 = next;
P3 = in;
} else {
P1 = previous;
P2 = nearest;
P3 = in;
n = n > 0 ? n - 1 : spanCount - 1;
}
float L1Sqr = P1.dst2(P2);
float L2Sqr = P3.dst2(P2);
float L3Sqr = P3.dst2(P1);
float L1 = (float)Math.sqrt(L1Sqr);
float s = (L2Sqr + L1Sqr - L3Sqr) / (2 * L1);
float u = MathUtils.clamp((L1 - s) / L1, 0f, 1f);
return (n + u) / spanCount;
}
@Override
public float locate (T v) {
// TODO Add a precise method
return approximate(v);
}
@Override
public float approxLength (int samples) {
float tempLength = 0;
for (int i = 0; i < samples; ++i) {
tmp2.set(tmp3);
valueAt(tmp3, (i) / ((float)samples - 1));
if (i > 0) tempLength += tmp2.dst(tmp3);
}
return tempLength;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy