org.mini2Dx.gdx.math.Bezier Maven / Gradle / Ivy
/*******************************************************************************
* Copyright 2011 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
package org.mini2Dx.gdx.math;
import org.mini2Dx.gdx.utils.Array;
import org.mini2Dx.gdx.utils.GdxRuntimeException;
/** Implementation of the Bezier curve.
* @author Xoppa */
public class Bezier> implements Path {
// TODO implement Serializable
/** Simple linear interpolation
* @param out The {@link Vector} to set to the result.
* @param t The location (ranging 0..1) on the line.
* @param p0 The start point.
* @param p1 The end point.
* @param tmp A temporary vector to be used by the calculation.
* @return The value specified by out for chaining */
public static > T linear (final T out, final float t, final T p0, final T p1, final T tmp) {
// B1(t) = p0 + (p1-p0)*t
return out.set(p0).scl(1f - t).add(tmp.set(p1).scl(t)); // Could just use lerp...
}
/** Simple linear interpolation derivative
* @param out The {@link Vector} to set to the result.
* @param t The location (ranging 0..1) on the line.
* @param p0 The start point.
* @param p1 The end point.
* @param tmp A temporary vector to be used by the calculation.
* @return The value specified by out for chaining */
public static > T linear_derivative (final T out, final float t, final T p0, final T p1, final T tmp) {
// B1'(t) = p1-p0
return out.set(p1).sub(p0);
}
/** Quadratic Bezier curve
* @param out The {@link Vector} to set to the result.
* @param t The location (ranging 0..1) on the curve.
* @param p0 The first bezier point.
* @param p1 The second bezier point.
* @param p2 The third bezier point.
* @param tmp A temporary vector to be used by the calculation.
* @return The value specified by out for chaining */
public static > T quadratic (final T out, final float t, final T p0, final T p1, final T p2, final T tmp) {
// B2(t) = (1 - t) * (1 - t) * p0 + 2 * (1-t) * t * p1 + t*t*p2
final float dt = 1f - t;
return out.set(p0).scl(dt * dt).add(tmp.set(p1).scl(2 * dt * t)).add(tmp.set(p2).scl(t * t));
}
/** Quadratic Bezier curve derivative
* @param out The {@link Vector} to set to the result.
* @param t The location (ranging 0..1) on the curve.
* @param p0 The first bezier point.
* @param p1 The second bezier point.
* @param p2 The third bezier point.
* @param tmp A temporary vector to be used by the calculation.
* @return The value specified by out for chaining */
public static > T quadratic_derivative (final T out, final float t, final T p0, final T p1, final T p2,
final T tmp) {
// B2'(t) = 2 * (1 - t) * (p1 - p0) + 2 * t * (p2 - p1)
final float dt = 1f - t;
return out.set(p1).sub(p0).scl(2).scl(1 - t).add(tmp.set(p2).sub(p1).scl(t).scl(2));
}
/** Cubic Bezier curve
* @param out The {@link Vector} to set to the result.
* @param t The location (ranging 0..1) on the curve.
* @param p0 The first bezier point.
* @param p1 The second bezier point.
* @param p2 The third bezier point.
* @param p3 The fourth bezier point.
* @param tmp A temporary vector to be used by the calculation.
* @return The value specified by out for chaining */
public static > T cubic (final T out, final float t, final T p0, final T p1, final T p2, final T p3,
final T tmp) {
// B3(t) = (1-t) * (1-t) * (1-t) * p0 + 3 * (1-t) * (1-t) * t * p1 + 3 * (1-t) * t * t * p2 + t * t * t * p3
final float dt = 1f - t;
final float dt2 = dt * dt;
final float t2 = t * t;
return out.set(p0).scl(dt2 * dt).add(tmp.set(p1).scl(3 * dt2 * t)).add(tmp.set(p2).scl(3 * dt * t2))
.add(tmp.set(p3).scl(t2 * t));
}
/** Cubic Bezier curve derivative
* @param out The {@link Vector} to set to the result.
* @param t The location (ranging 0..1) on the curve.
* @param p0 The first bezier point.
* @param p1 The second bezier point.
* @param p2 The third bezier point.
* @param p3 The fourth bezier point.
* @param tmp A temporary vector to be used by the calculation.
* @return The value specified by out for chaining */
public static > T cubic_derivative (final T out, final float t, final T p0, final T p1, final T p2,
final T p3, final T tmp) {
// B3'(t) = 3 * (1-t) * (1-t) * (p1 - p0) + 6 * (1 - t) * t * (p2 - p1) + 3 * t * t * (p3 - p2)
final float dt = 1f - t;
final float dt2 = dt * dt;
final float t2 = t * t;
return out.set(p1).sub(p0).scl(dt2 * 3).add(tmp.set(p2).sub(p1).scl(dt * t * 6)).add(tmp.set(p3).sub(p2).scl(t2 * 3));
}
public Array points = new Array();
private T tmp;
private T tmp2;
private T tmp3;
public Bezier () {
}
public Bezier (final T... points) {
set(points);
}
public Bezier (final T[] points, final int offset, final int length) {
set(points, offset, length);
}
public Bezier (final Array points, final int offset, final int length) {
set(points, offset, length);
}
public Bezier set (final T... points) {
return set(points, 0, points.length);
}
public Bezier set (final T[] points, final int offset, final int length) {
if (length < 2 || length > 4)
throw new GdxRuntimeException("Only first, second and third degree Bezier curves are supported.");
if (tmp == null) tmp = points[0].cpy();
if (tmp2 == null) tmp2 = points[0].cpy();
if (tmp3 == null) tmp3 = points[0].cpy();
this.points.clear();
this.points.addAll(points, offset, length);
return this;
}
public Bezier set (final Array points, final int offset, final int length) {
if (length < 2 || length > 4)
throw new GdxRuntimeException("Only first, second and third degree Bezier curves are supported.");
if (tmp == null) tmp = points.get(0).cpy();
this.points.clear();
this.points.addAll(points, offset, length);
return this;
}
@Override
public T valueAt (final T out, final float t) {
final int n = points.size;
if (n == 2)
linear(out, t, points.get(0), points.get(1), tmp);
else if (n == 3)
quadratic(out, t, points.get(0), points.get(1), points.get(2), tmp);
else if (n == 4) cubic(out, t, points.get(0), points.get(1), points.get(2), points.get(3), tmp);
return out;
}
@Override
public T derivativeAt (final T out, final float t) {
final int n = points.size;
if (n == 2)
linear_derivative(out, t, points.get(0), points.get(1), tmp);
else if (n == 3)
quadratic_derivative(out, t, points.get(0), points.get(1), points.get(2), tmp);
else if (n == 4) cubic_derivative(out, t, points.get(0), points.get(1), points.get(2), points.get(3), tmp);
return out;
}
@Override
public float approximate (final T v) {
// TODO: make a real approximate method
T p1 = points.get(0);
T p2 = points.get(points.size - 1);
T p3 = v;
float l1Sqr = p1.dst2(p2);
float l2Sqr = p3.dst2(p2);
float l3Sqr = p3.dst2(p1);
float l1 = (float)Math.sqrt(l1Sqr);
float s = (l2Sqr + l1Sqr - l3Sqr) / (2 * l1);
return MathUtils.clamp((l1 - s) / l1, 0f, 1f);
}
@Override
public float locate (T v) {
// TODO implement a precise method
return approximate(v);
}
@Override
public float approxLength (int samples) {
float tempLength = 0;
for (int i = 0; i < samples; ++i) {
tmp2.set(tmp3);
valueAt(tmp3, (i) / ((float)samples - 1));
if (i > 0) tempLength += tmp2.dst(tmp3);
}
return tempLength;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy