All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.mini2Dx.gdx.math.ConvexHull Maven / Gradle / Ivy

There is a newer version: 1.9.13
Show newest version
/*******************************************************************************
 * Copyright 2011 See AUTHORS file.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ******************************************************************************/

package org.mini2Dx.gdx.math;

import org.mini2Dx.gdx.utils.FloatArray;
import org.mini2Dx.gdx.utils.IntArray;
import org.mini2Dx.gdx.utils.ShortArray;

/** Computes the convex hull of a set of points using the monotone chain convex hull algorithm (aka Andrew's algorithm).
 * @author Nathan Sweet */
public class ConvexHull {
	private final IntArray quicksortStack = new IntArray();
	private float[] sortedPoints;
	private final FloatArray hull = new FloatArray();
	private final IntArray indices = new IntArray();
	private final ShortArray originalIndices = new ShortArray(false, 0);

	/** @see #computePolygon(float[], int, int, boolean) */
	public FloatArray computePolygon (FloatArray points, boolean sorted) {
		return computePolygon(points.items, 0, points.size, sorted);
	}

	/** @see #computePolygon(float[], int, int, boolean) */
	public FloatArray computePolygon (float[] polygon, boolean sorted) {
		return computePolygon(polygon, 0, polygon.length, sorted);
	}

	/** Returns a list of points on the convex hull in counter-clockwise order. Note: the last point in the returned list is the
	 * same as the first one. */
	/** Returns the convex hull polygon for the given point cloud.
	 * @param points x,y pairs describing points. Duplicate points will result in undefined behavior.
	 * @param sorted If false, the points will be sorted by the x coordinate then the y coordinate, which is required by the convex
	 *           hull algorithm. If sorting is done the input array is not modified and count additional working memory is needed.
	 * @return pairs of coordinates that describe the convex hull polygon in counterclockwise order. Note the returned array is
	 *         reused for later calls to the same method. */
	public FloatArray computePolygon (float[] points, int offset, int count, boolean sorted) {
		int end = offset + count;

		if (!sorted) {
			if (sortedPoints == null || sortedPoints.length < count) sortedPoints = new float[count];
			System.arraycopy(points, offset, sortedPoints, 0, count);
			points = sortedPoints;
			offset = 0;
			sort(points, count);
		}

		FloatArray hull = this.hull;
		hull.clear();

		// Lower hull.
		for (int i = offset; i < end; i += 2) {
			float x = points[i];
			float y = points[i + 1];
			while (hull.size >= 4 && ccw(x, y) <= 0)
				hull.size -= 2;
			hull.add(x);
			hull.add(y);
		}

		// Upper hull.
		for (int i = end - 4, t = hull.size + 2; i >= offset; i -= 2) {
			float x = points[i];
			float y = points[i + 1];
			while (hull.size >= t && ccw(x, y) <= 0)
				hull.size -= 2;
			hull.add(x);
			hull.add(y);
		}

		return hull;
	}

	/** @see #computeIndices(float[], int, int, boolean, boolean) */
	public IntArray computeIndices (FloatArray points, boolean sorted, boolean yDown) {
		return computeIndices(points.items, 0, points.size, sorted, yDown);
	}

	/** @see #computeIndices(float[], int, int, boolean, boolean) */
	public IntArray computeIndices (float[] polygon, boolean sorted, boolean yDown) {
		return computeIndices(polygon, 0, polygon.length, sorted, yDown);
	}

	/** Computes a hull the same as {@link #computePolygon(float[], int, int, boolean)} but returns indices of the specified points. */
	public IntArray computeIndices (float[] points, int offset, int count, boolean sorted, boolean yDown) {
		int end = offset + count;

		if (!sorted) {
			if (sortedPoints == null || sortedPoints.length < count) sortedPoints = new float[count];
			System.arraycopy(points, offset, sortedPoints, 0, count);
			points = sortedPoints;
			offset = 0;
			sortWithIndices(points, count, yDown);
		}

		IntArray indices = this.indices;
		indices.clear();

		FloatArray hull = this.hull;
		hull.clear();

		// Lower hull.
		for (int i = offset, index = i / 2; i < end; i += 2, index++) {
			float x = points[i];
			float y = points[i + 1];
			while (hull.size >= 4 && ccw(x, y) <= 0) {
				hull.size -= 2;
				indices.size--;
			}
			hull.add(x);
			hull.add(y);
			indices.add(index);
		}

		// Upper hull.
		for (int i = end - 4, index = i / 2, t = hull.size + 2; i >= offset; i -= 2, index--) {
			float x = points[i];
			float y = points[i + 1];
			while (hull.size >= t && ccw(x, y) <= 0) {
				hull.size -= 2;
				indices.size--;
			}
			hull.add(x);
			hull.add(y);
			indices.add(index);
		}

		// Convert sorted to unsorted indices.
		if (!sorted) {
			short[] originalIndicesArray = originalIndices.items;
			int[] indicesArray = indices.items;
			for (int i = 0, n = indices.size; i < n; i++)
				indicesArray[i] = originalIndicesArray[indicesArray[i]];
		}

		return indices;
	}

	/** Returns > 0 if the points are a counterclockwise turn, < 0 if clockwise, and 0 if colinear. */
	private float ccw (float p3x, float p3y) {
		FloatArray hull = this.hull;
		int size = hull.size;
		float p1x = hull.get(size - 4);
		float p1y = hull.get(size - 3);
		float p2x = hull.get(size - 2);
		float p2y = hull.peek();
		return (p2x - p1x) * (p3y - p1y) - (p2y - p1y) * (p3x - p1x);
	}

	/** Sorts x,y pairs of values by the x value, then the y value.
	 * @param count Number of indices, must be even. */
	private void sort (float[] values, int count) {
		int lower = 0;
		int upper = count - 1;
		IntArray stack = quicksortStack;
		stack.add(lower);
		stack.add(upper - 1);
		while (stack.size > 0) {
			upper = stack.pop();
			lower = stack.pop();
			if (upper <= lower) continue;
			int i = quicksortPartition(values, lower, upper);
			if (i - lower > upper - i) {
				stack.add(lower);
				stack.add(i - 2);
			}
			stack.add(i + 2);
			stack.add(upper);
			if (upper - i >= i - lower) {
				stack.add(lower);
				stack.add(i - 2);
			}
		}
	}

	private int quicksortPartition (final float[] values, int lower, int upper) {
		float x = values[lower];
		float y = values[lower + 1];
		int up = upper;
		int down = lower;
		float temp;
		short tempIndex;
		while (down < up) {
			while (down < up && values[down] <= x)
				down = down + 2;
			while (values[up] > x || (values[up] == x && values[up + 1] < y))
				up = up - 2;
			if (down < up) {
				temp = values[down];
				values[down] = values[up];
				values[up] = temp;

				temp = values[down + 1];
				values[down + 1] = values[up + 1];
				values[up + 1] = temp;
			}
		}
		values[lower] = values[up];
		values[up] = x;

		values[lower + 1] = values[up + 1];
		values[up + 1] = y;

		return up;
	}

	/** Sorts x,y pairs of values by the x value, then the y value and stores unsorted original indices.
	 * @param count Number of indices, must be even. */
	private void sortWithIndices (float[] values, int count, boolean yDown) {
		int pointCount = count / 2;
		originalIndices.clear();
		originalIndices.ensureCapacity(pointCount);
		short[] originalIndicesArray = originalIndices.items;
		for (short i = 0; i < pointCount; i++)
			originalIndicesArray[i] = i;

		int lower = 0;
		int upper = count - 1;
		IntArray stack = quicksortStack;
		stack.add(lower);
		stack.add(upper - 1);
		while (stack.size > 0) {
			upper = stack.pop();
			lower = stack.pop();
			if (upper <= lower) continue;
			int i = quicksortPartitionWithIndices(values, lower, upper, yDown, originalIndicesArray);
			if (i - lower > upper - i) {
				stack.add(lower);
				stack.add(i - 2);
			}
			stack.add(i + 2);
			stack.add(upper);
			if (upper - i >= i - lower) {
				stack.add(lower);
				stack.add(i - 2);
			}
		}
	}

	private int quicksortPartitionWithIndices (final float[] values, int lower, int upper, boolean yDown, short[] originalIndices) {
		float x = values[lower];
		float y = values[lower + 1];
		int up = upper;
		int down = lower;
		float temp;
		short tempIndex;
		while (down < up) {
			while (down < up && values[down] <= x)
				down = down + 2;
			if (yDown) {
				while (values[up] > x || (values[up] == x && values[up + 1] < y))
					up = up - 2;
			} else {
				while (values[up] > x || (values[up] == x && values[up + 1] > y))
					up = up - 2;
			}
			if (down < up) {
				temp = values[down];
				values[down] = values[up];
				values[up] = temp;

				temp = values[down + 1];
				values[down + 1] = values[up + 1];
				values[up + 1] = temp;

				tempIndex = originalIndices[down / 2];
				originalIndices[down / 2] = originalIndices[up / 2];
				originalIndices[up / 2] = tempIndex;
			}
		}
		values[lower] = values[up];
		values[up] = x;

		values[lower + 1] = values[up + 1];
		values[up + 1] = y;

		tempIndex = originalIndices[lower / 2];
		originalIndices[lower / 2] = originalIndices[up / 2];
		originalIndices[up / 2] = tempIndex;

		return up;
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy