All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.mini2Dx.gdx.math.GeometryUtils Maven / Gradle / Ivy

There is a newer version: 1.9.13
Show newest version
/*******************************************************************************
 * Copyright 2011 See AUTHORS file.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ******************************************************************************/

package org.mini2Dx.gdx.math;

/** @author Nathan Sweet */
public final class GeometryUtils {
	static private final Vector2 tmp1 = new Vector2(), tmp2 = new Vector2(), tmp3 = new Vector2();

	/** Computes the barycentric coordinates v,w for the specified point in the triangle.
	 * 

* If barycentric.x >= 0 && barycentric.y >= 0 && barycentric.x + barycentric.y <= 1 then the point is inside the triangle. *

* If vertices a,b,c have values aa,bb,cc then to get an interpolated value at point p: * *

	 * GeometryUtils.barycentric(p, a, b, c, barycentric);
	 * float u = 1.f - barycentric.x - barycentric.y;
	 * float x = u * aa.x + barycentric.x * bb.x + barycentric.y * cc.x;
	 * float y = u * aa.y + barycentric.x * bb.y + barycentric.y * cc.y;
	 * 
* * @return barycentricOut */ static public Vector2 toBarycoord (Vector2 p, Vector2 a, Vector2 b, Vector2 c, Vector2 barycentricOut) { Vector2 v0 = tmp1.set(b).sub(a); Vector2 v1 = tmp2.set(c).sub(a); Vector2 v2 = tmp3.set(p).sub(a); float d00 = v0.dot(v0); float d01 = v0.dot(v1); float d11 = v1.dot(v1); float d20 = v2.dot(v0); float d21 = v2.dot(v1); float denom = d00 * d11 - d01 * d01; barycentricOut.x = (d11 * d20 - d01 * d21) / denom; barycentricOut.y = (d00 * d21 - d01 * d20) / denom; return barycentricOut; } /** Returns true if the barycentric coordinates are inside the triangle. */ static public boolean barycoordInsideTriangle (Vector2 barycentric) { return barycentric.x >= 0 && barycentric.y >= 0 && barycentric.x + barycentric.y <= 1; } /** Returns interpolated values given the barycentric coordinates of a point in a triangle and the values at each vertex. * @return interpolatedOut */ static public Vector2 fromBarycoord (Vector2 barycentric, Vector2 a, Vector2 b, Vector2 c, Vector2 interpolatedOut) { float u = 1 - barycentric.x - barycentric.y; interpolatedOut.x = u * a.x + barycentric.x * b.x + barycentric.y * c.x; interpolatedOut.y = u * a.y + barycentric.x * b.y + barycentric.y * c.y; return interpolatedOut; } /** Returns an interpolated value given the barycentric coordinates of a point in a triangle and the values at each vertex. * @return interpolatedOut */ static public float fromBarycoord (Vector2 barycentric, float a, float b, float c) { float u = 1 - barycentric.x - barycentric.y; return u * a + barycentric.x * b + barycentric.y * c; } /** Returns the lowest positive root of the quadric equation given by a* x * x + b * x + c = 0. If no solution is given * Float.Nan is returned. * @param a the first coefficient of the quadric equation * @param b the second coefficient of the quadric equation * @param c the third coefficient of the quadric equation * @return the lowest positive root or Float.Nan */ static public float lowestPositiveRoot (float a, float b, float c) { float det = b * b - 4 * a * c; if (det < 0) return Float.NaN; float sqrtD = (float)Math.sqrt(det); float invA = 1 / (2 * a); float r1 = (-b - sqrtD) * invA; float r2 = (-b + sqrtD) * invA; if (r1 > r2) { float tmp = r2; r2 = r1; r1 = tmp; } if (r1 > 0) return r1; if (r2 > 0) return r2; return Float.NaN; } static public boolean colinear (float x1, float y1, float x2, float y2, float x3, float y3) { float dx21 = x2 - x1, dy21 = y2 - y1; float dx32 = x3 - x2, dy32 = y3 - y2; float det = dx32 * dy21 - dx21 * dy32; return Math.abs(det) < MathUtils.FLOAT_ROUNDING_ERROR; } static public Vector2 triangleCentroid (float x1, float y1, float x2, float y2, float x3, float y3, Vector2 centroid) { centroid.x = (x1 + x2 + x3) / 3; centroid.y = (y1 + y2 + y3) / 3; return centroid; } /** Returns the circumcenter of the triangle. The input points must not be colinear. */ static public Vector2 triangleCircumcenter (float x1, float y1, float x2, float y2, float x3, float y3, Vector2 circumcenter) { float dx21 = x2 - x1, dy21 = y2 - y1; float dx32 = x3 - x2, dy32 = y3 - y2; float dx13 = x1 - x3, dy13 = y1 - y3; float det = dx32 * dy21 - dx21 * dy32; if (Math.abs(det) < MathUtils.FLOAT_ROUNDING_ERROR) throw new IllegalArgumentException("Triangle points must not be colinear."); det *= 2; float sqr1 = x1 * x1 + y1 * y1, sqr2 = x2 * x2 + y2 * y2, sqr3 = x3 * x3 + y3 * y3; circumcenter.set((sqr1 * dy32 + sqr2 * dy13 + sqr3 * dy21) / det, -(sqr1 * dx32 + sqr2 * dx13 + sqr3 * dx21) / det); return circumcenter; } static public float triangleCircumradius (float x1, float y1, float x2, float y2, float x3, float y3) { float m1, m2, mx1, mx2, my1, my2, x, y; if (Math.abs(y2 - y1) < MathUtils.FLOAT_ROUNDING_ERROR) { m2 = -(x3 - x2) / (y3 - y2); mx2 = (x2 + x3) / 2; my2 = (y2 + y3) / 2; x = (x2 + x1) / 2; y = m2 * (x - mx2) + my2; } else if (Math.abs(y3 - y2) < MathUtils.FLOAT_ROUNDING_ERROR) { m1 = -(x2 - x1) / (y2 - y1); mx1 = (x1 + x2) / 2; my1 = (y1 + y2) / 2; x = (x3 + x2) / 2; y = m1 * (x - mx1) + my1; } else { m1 = -(x2 - x1) / (y2 - y1); m2 = -(x3 - x2) / (y3 - y2); mx1 = (x1 + x2) / 2; mx2 = (x2 + x3) / 2; my1 = (y1 + y2) / 2; my2 = (y2 + y3) / 2; x = (m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2); y = m1 * (x - mx1) + my1; } float dx = x1 - x, dy = y1 - y; return (float)Math.sqrt(dx * dx + dy * dy); } /** Ratio of circumradius to shortest edge as a measure of triangle quality. *

* Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington. A Delaunay Based Numerical Method for Three Dimensions: * Generation, Formulation, and Partition. */ static public float triangleQuality (float x1, float y1, float x2, float y2, float x3, float y3) { float length1 = (float)Math.sqrt(x1 * x1 + y1 * y1); float length2 = (float)Math.sqrt(x2 * x2 + y2 * y2); float length3 = (float)Math.sqrt(x3 * x3 + y3 * y3); return Math.min(length1, Math.min(length2, length3)) / triangleCircumradius(x1, y1, x2, y2, x3, y3); } static public float triangleArea (float x1, float y1, float x2, float y2, float x3, float y3) { return Math.abs((x1 - x3) * (y2 - y1) - (x1 - x2) * (y3 - y1)) * 0.5f; } static public Vector2 quadrilateralCentroid (float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4, Vector2 centroid) { float avgX1 = (x1 + x2 + x3) / 3; float avgY1 = (y1 + y2 + y3) / 3; float avgX2 = (x1 + x4 + x3) / 3; float avgY2 = (y1 + y4 + y3) / 3; centroid.x = avgX1 - (avgX1 - avgX2) / 2; centroid.y = avgY1 - (avgY1 - avgY2) / 2; return centroid; } /** Returns the centroid for the specified non-self-intersecting polygon. */ static public Vector2 polygonCentroid (float[] polygon, int offset, int count, Vector2 centroid) { if (count < 6) throw new IllegalArgumentException("A polygon must have 3 or more coordinate pairs."); float x = 0, y = 0; float signedArea = 0; int i = offset; for (int n = offset + count - 2; i < n; i += 2) { float x0 = polygon[i]; float y0 = polygon[i + 1]; float x1 = polygon[i + 2]; float y1 = polygon[i + 3]; float a = x0 * y1 - x1 * y0; signedArea += a; x += (x0 + x1) * a; y += (y0 + y1) * a; } float x0 = polygon[i]; float y0 = polygon[i + 1]; float x1 = polygon[offset]; float y1 = polygon[offset + 1]; float a = x0 * y1 - x1 * y0; signedArea += a; x += (x0 + x1) * a; y += (y0 + y1) * a; if (signedArea == 0) { centroid.x = 0; centroid.y = 0; } else { signedArea *= 0.5f; centroid.x = x / (6 * signedArea); centroid.y = y / (6 * signedArea); } return centroid; } /** Computes the area for a convex polygon. */ static public float polygonArea (float[] polygon, int offset, int count) { float area = 0; for (int i = offset, n = offset + count; i < n; i += 2) { int x1 = i; int y1 = i + 1; int x2 = (i + 2) % n; if (x2 < offset) x2 += offset; int y2 = (i + 3) % n; if (y2 < offset) y2 += offset; area += polygon[x1] * polygon[y2]; area -= polygon[x2] * polygon[y1]; } area *= 0.5f; return area; } static public void ensureCCW (float[] polygon) { if (!areVerticesClockwise(polygon, 0, polygon.length)) return; int lastX = polygon.length - 2; for (int i = 0, n = polygon.length / 2; i < n; i += 2) { int other = lastX - i; float x = polygon[i]; float y = polygon[i + 1]; polygon[i] = polygon[other]; polygon[i + 1] = polygon[other + 1]; polygon[other] = x; polygon[other + 1] = y; } } static private boolean areVerticesClockwise (float[] polygon, int offset, int count) { if (count <= 2) return false; float area = 0, p1x, p1y, p2x, p2y; for (int i = offset, n = offset + count - 3; i < n; i += 2) { p1x = polygon[i]; p1y = polygon[i + 1]; p2x = polygon[i + 2]; p2y = polygon[i + 3]; area += p1x * p2y - p2x * p1y; } p1x = polygon[count - 2]; p1y = polygon[count - 1]; p2x = polygon[0]; p2y = polygon[1]; return area + p1x * p2y - p2x * p1y < 0; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy