All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.mini2Dx.gdx.math.Matrix3 Maven / Gradle / Ivy

There is a newer version: 1.9.13
Show newest version
/*******************************************************************************
 * Copyright 2011 See AUTHORS file.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ******************************************************************************/

package org.mini2Dx.gdx.math;

import java.io.Serializable;

import org.mini2Dx.gdx.utils.GdxRuntimeException;

/** A 3x3 column major matrix; useful for 2D
 * transforms.
 * 
 * @author mzechner */
public class Matrix3 implements Serializable {
	private static final long serialVersionUID = 7907569533774959788L;
	public static final int M00 = 0;
	public static final int M01 = 3;
	public static final int M02 = 6;
	public static final int M10 = 1;
	public static final int M11 = 4;
	public static final int M12 = 7;
	public static final int M20 = 2;
	public static final int M21 = 5;
	public static final int M22 = 8;
	public float[] val = new float[9];
	private float[] tmp = new float[9];

	public Matrix3 () {
		idt();
	}

	public Matrix3 (Matrix3 matrix) {
		set(matrix);
	}

	/** Constructs a matrix from the given float array. The array must have at least 9 elements; the first 9 will be copied.
	 * @param values The float array to copy. Remember that this matrix is in column major order. (The float array is
	 *           not modified.) */
	public Matrix3 (float[] values) {
		this.set(values);
	}

	/** Sets this matrix to the identity matrix
	 * @return This matrix for the purpose of chaining operations. */
	public Matrix3 idt () {
		float[] val = this.val;
		val[M00] = 1;
		val[M10] = 0;
		val[M20] = 0;
		val[M01] = 0;
		val[M11] = 1;
		val[M21] = 0;
		val[M02] = 0;
		val[M12] = 0;
		val[M22] = 1;
		return this;
	}

	/** Postmultiplies this matrix with the provided matrix and stores the result in this matrix. For example:
	 * 
	 * 
	 * A.mul(B) results in A := AB
	 * 
* @param m Matrix to multiply by. * @return This matrix for the purpose of chaining operations together. */ public Matrix3 mul (Matrix3 m) { float[] val = this.val; float v00 = val[M00] * m.val[M00] + val[M01] * m.val[M10] + val[M02] * m.val[M20]; float v01 = val[M00] * m.val[M01] + val[M01] * m.val[M11] + val[M02] * m.val[M21]; float v02 = val[M00] * m.val[M02] + val[M01] * m.val[M12] + val[M02] * m.val[M22]; float v10 = val[M10] * m.val[M00] + val[M11] * m.val[M10] + val[M12] * m.val[M20]; float v11 = val[M10] * m.val[M01] + val[M11] * m.val[M11] + val[M12] * m.val[M21]; float v12 = val[M10] * m.val[M02] + val[M11] * m.val[M12] + val[M12] * m.val[M22]; float v20 = val[M20] * m.val[M00] + val[M21] * m.val[M10] + val[M22] * m.val[M20]; float v21 = val[M20] * m.val[M01] + val[M21] * m.val[M11] + val[M22] * m.val[M21]; float v22 = val[M20] * m.val[M02] + val[M21] * m.val[M12] + val[M22] * m.val[M22]; val[M00] = v00; val[M10] = v10; val[M20] = v20; val[M01] = v01; val[M11] = v11; val[M21] = v21; val[M02] = v02; val[M12] = v12; val[M22] = v22; return this; } /** Premultiplies this matrix with the provided matrix and stores the result in this matrix. For example: * *
	 * A.mulLeft(B) results in A := BA
	 * 
* @param m The other Matrix to multiply by * @return This matrix for the purpose of chaining operations. */ public Matrix3 mulLeft (Matrix3 m) { float[] val = this.val; float v00 = m.val[M00] * val[M00] + m.val[M01] * val[M10] + m.val[M02] * val[M20]; float v01 = m.val[M00] * val[M01] + m.val[M01] * val[M11] + m.val[M02] * val[M21]; float v02 = m.val[M00] * val[M02] + m.val[M01] * val[M12] + m.val[M02] * val[M22]; float v10 = m.val[M10] * val[M00] + m.val[M11] * val[M10] + m.val[M12] * val[M20]; float v11 = m.val[M10] * val[M01] + m.val[M11] * val[M11] + m.val[M12] * val[M21]; float v12 = m.val[M10] * val[M02] + m.val[M11] * val[M12] + m.val[M12] * val[M22]; float v20 = m.val[M20] * val[M00] + m.val[M21] * val[M10] + m.val[M22] * val[M20]; float v21 = m.val[M20] * val[M01] + m.val[M21] * val[M11] + m.val[M22] * val[M21]; float v22 = m.val[M20] * val[M02] + m.val[M21] * val[M12] + m.val[M22] * val[M22]; val[M00] = v00; val[M10] = v10; val[M20] = v20; val[M01] = v01; val[M11] = v11; val[M21] = v21; val[M02] = v02; val[M12] = v12; val[M22] = v22; return this; } /** Sets this matrix to a rotation matrix that will rotate any vector in counter-clockwise direction around the z-axis. * @param degrees the angle in degrees. * @return This matrix for the purpose of chaining operations. */ public Matrix3 setToRotation (float degrees) { return setToRotationRad(MathUtils.degreesToRadians * degrees); } /** Sets this matrix to a rotation matrix that will rotate any vector in counter-clockwise direction around the z-axis. * @param radians the angle in radians. * @return This matrix for the purpose of chaining operations. */ public Matrix3 setToRotationRad (float radians) { float cos = (float)Math.cos(radians); float sin = (float)Math.sin(radians); float[] val = this.val; val[M00] = cos; val[M10] = sin; val[M20] = 0; val[M01] = -sin; val[M11] = cos; val[M21] = 0; val[M02] = 0; val[M12] = 0; val[M22] = 1; return this; } public Matrix3 setToRotation (Vector3 axis, float degrees) { return setToRotation(axis, MathUtils.cosDeg(degrees), MathUtils.sinDeg(degrees)); } public Matrix3 setToRotation (Vector3 axis, float cos, float sin) { float[] val = this.val; float oc = 1.0f - cos; val[M00] = oc * axis.x * axis.x + cos; val[M10] = oc * axis.x * axis.y - axis.z * sin; val[M20] = oc * axis.z * axis.x + axis.y * sin; val[M01] = oc * axis.x * axis.y + axis.z * sin; val[M11] = oc * axis.y * axis.y + cos; val[M21] = oc * axis.y * axis.z - axis.x * sin; val[M02] = oc * axis.z * axis.x - axis.y * sin; val[M12] = oc * axis.y * axis.z + axis.x * sin; val[M22] = oc * axis.z * axis.z + cos; return this; } /** Sets this matrix to a translation matrix. * @param x the translation in x * @param y the translation in y * @return This matrix for the purpose of chaining operations. */ public Matrix3 setToTranslation (float x, float y) { float[] val = this.val; val[M00] = 1; val[M10] = 0; val[M20] = 0; val[M01] = 0; val[M11] = 1; val[M21] = 0; val[M02] = x; val[M12] = y; val[M22] = 1; return this; } /** Sets this matrix to a translation matrix. * @param translation The translation vector. * @return This matrix for the purpose of chaining operations. */ public Matrix3 setToTranslation (Vector2 translation) { float[] val = this.val; val[M00] = 1; val[M10] = 0; val[M20] = 0; val[M01] = 0; val[M11] = 1; val[M21] = 0; val[M02] = translation.x; val[M12] = translation.y; val[M22] = 1; return this; } /** Sets this matrix to a scaling matrix. * * @param scaleX the scale in x * @param scaleY the scale in y * @return This matrix for the purpose of chaining operations. */ public Matrix3 setToScaling (float scaleX, float scaleY) { float[] val = this.val; val[M00] = scaleX; val[M10] = 0; val[M20] = 0; val[M01] = 0; val[M11] = scaleY; val[M21] = 0; val[M02] = 0; val[M12] = 0; val[M22] = 1; return this; } /** Sets this matrix to a scaling matrix. * @param scale The scale vector. * @return This matrix for the purpose of chaining operations. */ public Matrix3 setToScaling (Vector2 scale) { float[] val = this.val; val[M00] = scale.x; val[M10] = 0; val[M20] = 0; val[M01] = 0; val[M11] = scale.y; val[M21] = 0; val[M02] = 0; val[M12] = 0; val[M22] = 1; return this; } public String toString () { float[] val = this.val; return "[" + val[M00] + "|" + val[M01] + "|" + val[M02] + "]\n" // + "[" + val[M10] + "|" + val[M11] + "|" + val[M12] + "]\n" // + "[" + val[M20] + "|" + val[M21] + "|" + val[M22] + "]"; } /** @return The determinant of this matrix */ public float det () { float[] val = this.val; return val[M00] * val[M11] * val[M22] + val[M01] * val[M12] * val[M20] + val[M02] * val[M10] * val[M21] - val[M00] * val[M12] * val[M21] - val[M01] * val[M10] * val[M22] - val[M02] * val[M11] * val[M20]; } /** Inverts this matrix given that the determinant is != 0. * @return This matrix for the purpose of chaining operations. * @throws GdxRuntimeException if the matrix is singular (not invertible) */ public Matrix3 inv () { float det = det(); if (det == 0) throw new GdxRuntimeException("Can't invert a singular matrix"); float inv_det = 1.0f / det; float[] tmp = this.tmp, val = this.val; tmp[M00] = val[M11] * val[M22] - val[M21] * val[M12]; tmp[M10] = val[M20] * val[M12] - val[M10] * val[M22]; tmp[M20] = val[M10] * val[M21] - val[M20] * val[M11]; tmp[M01] = val[M21] * val[M02] - val[M01] * val[M22]; tmp[M11] = val[M00] * val[M22] - val[M20] * val[M02]; tmp[M21] = val[M20] * val[M01] - val[M00] * val[M21]; tmp[M02] = val[M01] * val[M12] - val[M11] * val[M02]; tmp[M12] = val[M10] * val[M02] - val[M00] * val[M12]; tmp[M22] = val[M00] * val[M11] - val[M10] * val[M01]; val[M00] = inv_det * tmp[M00]; val[M10] = inv_det * tmp[M10]; val[M20] = inv_det * tmp[M20]; val[M01] = inv_det * tmp[M01]; val[M11] = inv_det * tmp[M11]; val[M21] = inv_det * tmp[M21]; val[M02] = inv_det * tmp[M02]; val[M12] = inv_det * tmp[M12]; val[M22] = inv_det * tmp[M22]; return this; } /** Copies the values from the provided matrix to this matrix. * @param mat The matrix to copy. * @return This matrix for the purposes of chaining. */ public Matrix3 set (Matrix3 mat) { System.arraycopy(mat.val, 0, val, 0, val.length); return this; } /** Copies the values from the provided affine matrix to this matrix. The last row is set to (0, 0, 1). * @param affine The affine matrix to copy. * @return This matrix for the purposes of chaining. */ public Matrix3 set (Affine2 affine) { float[] val = this.val; val[M00] = affine.m00; val[M10] = affine.m10; val[M20] = 0; val[M01] = affine.m01; val[M11] = affine.m11; val[M21] = 0; val[M02] = affine.m02; val[M12] = affine.m12; val[M22] = 1; return this; } /** Sets this 3x3 matrix to the top left 3x3 corner of the provided 4x4 matrix. * @param mat The matrix whose top left corner will be copied. This matrix will not be modified. * @return This matrix for the purpose of chaining operations. */ public Matrix3 set (Matrix4 mat) { float[] val = this.val; val[M00] = mat.val[Matrix4.M00]; val[M10] = mat.val[Matrix4.M10]; val[M20] = mat.val[Matrix4.M20]; val[M01] = mat.val[Matrix4.M01]; val[M11] = mat.val[Matrix4.M11]; val[M21] = mat.val[Matrix4.M21]; val[M02] = mat.val[Matrix4.M02]; val[M12] = mat.val[Matrix4.M12]; val[M22] = mat.val[Matrix4.M22]; return this; } /** Sets the matrix to the given matrix as a float array. The float array must have at least 9 elements; the first 9 will be * copied. * * @param values The matrix, in float form, that is to be copied. Remember that this matrix is in column major order. * @return This matrix for the purpose of chaining methods together. */ public Matrix3 set (float[] values) { System.arraycopy(values, 0, val, 0, val.length); return this; } /** Adds a translational component to the matrix in the 3rd column. The other columns are untouched. * @param vector The translation vector. * @return This matrix for the purpose of chaining. */ public Matrix3 trn (Vector2 vector) { val[M02] += vector.x; val[M12] += vector.y; return this; } /** Adds a translational component to the matrix in the 3rd column. The other columns are untouched. * @param x The x-component of the translation vector. * @param y The y-component of the translation vector. * @return This matrix for the purpose of chaining. */ public Matrix3 trn (float x, float y) { val[M02] += x; val[M12] += y; return this; } /** Adds a translational component to the matrix in the 3rd column. The other columns are untouched. * @param vector The translation vector. (The z-component of the vector is ignored because this is a 3x3 matrix) * @return This matrix for the purpose of chaining. */ public Matrix3 trn (Vector3 vector) { val[M02] += vector.x; val[M12] += vector.y; return this; } /** Postmultiplies this matrix by a translation matrix. Postmultiplication is also used by OpenGL ES' 1.x * glTranslate/glRotate/glScale. * @param x The x-component of the translation vector. * @param y The y-component of the translation vector. * @return This matrix for the purpose of chaining. */ public Matrix3 translate (float x, float y) { float[] val = this.val; tmp[M00] = 1; tmp[M10] = 0; tmp[M20] = 0; tmp[M01] = 0; tmp[M11] = 1; tmp[M21] = 0; tmp[M02] = x; tmp[M12] = y; tmp[M22] = 1; mul(val, tmp); return this; } /** Postmultiplies this matrix by a translation matrix. Postmultiplication is also used by OpenGL ES' 1.x * glTranslate/glRotate/glScale. * @param translation The translation vector. * @return This matrix for the purpose of chaining. */ public Matrix3 translate (Vector2 translation) { float[] val = this.val; tmp[M00] = 1; tmp[M10] = 0; tmp[M20] = 0; tmp[M01] = 0; tmp[M11] = 1; tmp[M21] = 0; tmp[M02] = translation.x; tmp[M12] = translation.y; tmp[M22] = 1; mul(val, tmp); return this; } /** Postmultiplies this matrix with a (counter-clockwise) rotation matrix. Postmultiplication is also used by OpenGL ES' 1.x * glTranslate/glRotate/glScale. * @param degrees The angle in degrees * @return This matrix for the purpose of chaining. */ public Matrix3 rotate (float degrees) { return rotateRad(MathUtils.degreesToRadians * degrees); } /** Postmultiplies this matrix with a (counter-clockwise) rotation matrix. Postmultiplication is also used by OpenGL ES' 1.x * glTranslate/glRotate/glScale. * @param radians The angle in radians * @return This matrix for the purpose of chaining. */ public Matrix3 rotateRad (float radians) { if (radians == 0) return this; float cos = (float)Math.cos(radians); float sin = (float)Math.sin(radians); float[] tmp = this.tmp; tmp[M00] = cos; tmp[M10] = sin; tmp[M20] = 0; tmp[M01] = -sin; tmp[M11] = cos; tmp[M21] = 0; tmp[M02] = 0; tmp[M12] = 0; tmp[M22] = 1; mul(val, tmp); return this; } /** Postmultiplies this matrix with a scale matrix. Postmultiplication is also used by OpenGL ES' 1.x * glTranslate/glRotate/glScale. * @param scaleX The scale in the x-axis. * @param scaleY The scale in the y-axis. * @return This matrix for the purpose of chaining. */ public Matrix3 scale (float scaleX, float scaleY) { float[] tmp = this.tmp; tmp[M00] = scaleX; tmp[M10] = 0; tmp[M20] = 0; tmp[M01] = 0; tmp[M11] = scaleY; tmp[M21] = 0; tmp[M02] = 0; tmp[M12] = 0; tmp[M22] = 1; mul(val, tmp); return this; } /** Postmultiplies this matrix with a scale matrix. Postmultiplication is also used by OpenGL ES' 1.x * glTranslate/glRotate/glScale. * @param scale The vector to scale the matrix by. * @return This matrix for the purpose of chaining. */ public Matrix3 scale (Vector2 scale) { float[] tmp = this.tmp; tmp[M00] = scale.x; tmp[M10] = 0; tmp[M20] = 0; tmp[M01] = 0; tmp[M11] = scale.y; tmp[M21] = 0; tmp[M02] = 0; tmp[M12] = 0; tmp[M22] = 1; mul(val, tmp); return this; } /** Get the values in this matrix. * @return The float values that make up this matrix in column-major order. */ public float[] getValues () { return val; } public Vector2 getTranslation (Vector2 position) { position.x = val[M02]; position.y = val[M12]; return position; } public Vector2 getScale (Vector2 scale) { float[] val = this.val; scale.x = (float)Math.sqrt(val[M00] * val[M00] + val[M01] * val[M01]); scale.y = (float)Math.sqrt(val[M10] * val[M10] + val[M11] * val[M11]); return scale; } public float getRotation () { return MathUtils.radiansToDegrees * (float)Math.atan2(val[M10], val[M00]); } public float getRotationRad () { return (float)Math.atan2(val[M10], val[M00]); } /** Scale the matrix in the both the x and y components by the scalar value. * @param scale The single value that will be used to scale both the x and y components. * @return This matrix for the purpose of chaining methods together. */ public Matrix3 scl (float scale) { val[M00] *= scale; val[M11] *= scale; return this; } /** Scale this matrix using the x and y components of the vector but leave the rest of the matrix alone. * @param scale The {@link Vector3} to use to scale this matrix. * @return This matrix for the purpose of chaining methods together. */ public Matrix3 scl (Vector2 scale) { val[M00] *= scale.x; val[M11] *= scale.y; return this; } /** Scale this matrix using the x and y components of the vector but leave the rest of the matrix alone. * @param scale The {@link Vector3} to use to scale this matrix. The z component will be ignored. * @return This matrix for the purpose of chaining methods together. */ public Matrix3 scl (Vector3 scale) { val[M00] *= scale.x; val[M11] *= scale.y; return this; } /** Transposes the current matrix. * @return This matrix for the purpose of chaining methods together. */ public Matrix3 transpose () { // Where MXY you do not have to change MXX float[] val = this.val; float v01 = val[M10]; float v02 = val[M20]; float v10 = val[M01]; float v12 = val[M21]; float v20 = val[M02]; float v21 = val[M12]; val[M01] = v01; val[M02] = v02; val[M10] = v10; val[M12] = v12; val[M20] = v20; val[M21] = v21; return this; } /** Multiplies matrix a with matrix b in the following manner: * *
	 * mul(A, B) => A := AB
	 * 
* @param mata The float array representing the first matrix. Must have at least 9 elements. * @param matb The float array representing the second matrix. Must have at least 9 elements. */ private static void mul (float[] mata, float[] matb) { float v00 = mata[M00] * matb[M00] + mata[M01] * matb[M10] + mata[M02] * matb[M20]; float v01 = mata[M00] * matb[M01] + mata[M01] * matb[M11] + mata[M02] * matb[M21]; float v02 = mata[M00] * matb[M02] + mata[M01] * matb[M12] + mata[M02] * matb[M22]; float v10 = mata[M10] * matb[M00] + mata[M11] * matb[M10] + mata[M12] * matb[M20]; float v11 = mata[M10] * matb[M01] + mata[M11] * matb[M11] + mata[M12] * matb[M21]; float v12 = mata[M10] * matb[M02] + mata[M11] * matb[M12] + mata[M12] * matb[M22]; float v20 = mata[M20] * matb[M00] + mata[M21] * matb[M10] + mata[M22] * matb[M20]; float v21 = mata[M20] * matb[M01] + mata[M21] * matb[M11] + mata[M22] * matb[M21]; float v22 = mata[M20] * matb[M02] + mata[M21] * matb[M12] + mata[M22] * matb[M22]; mata[M00] = v00; mata[M10] = v10; mata[M20] = v20; mata[M01] = v01; mata[M11] = v11; mata[M21] = v21; mata[M02] = v02; mata[M12] = v12; mata[M22] = v22; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy