org.mini2Dx.gdx.math.Quaternion Maven / Gradle / Ivy
/*******************************************************************************
* Copyright 2011 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
package org.mini2Dx.gdx.math;
import java.io.Serializable;
import org.mini2Dx.gdx.utils.NumberUtils;
/** A simple quaternion class.
* @see http://en.wikipedia.org/wiki/Quaternion
* @author [email protected]
* @author vesuvio
* @author xoppa */
public class Quaternion implements Serializable {
private static final long serialVersionUID = -7661875440774897168L;
private static Quaternion tmp1 = new Quaternion(0, 0, 0, 0);
private static Quaternion tmp2 = new Quaternion(0, 0, 0, 0);
public float x;
public float y;
public float z;
public float w;
/** Constructor, sets the four components of the quaternion.
* @param x The x-component
* @param y The y-component
* @param z The z-component
* @param w The w-component */
public Quaternion (float x, float y, float z, float w) {
this.set(x, y, z, w);
}
public Quaternion () {
idt();
}
/** Constructor, sets the quaternion components from the given quaternion.
*
* @param quaternion The quaternion to copy. */
public Quaternion (Quaternion quaternion) {
this.set(quaternion);
}
/** Constructor, sets the quaternion from the given axis vector and the angle around that axis in degrees.
*
* @param axis The axis
* @param angle The angle in degrees. */
public Quaternion (Vector3 axis, float angle) {
this.set(axis, angle);
}
/** Sets the components of the quaternion
* @param x The x-component
* @param y The y-component
* @param z The z-component
* @param w The w-component
* @return This quaternion for chaining */
public Quaternion set (float x, float y, float z, float w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
return this;
}
/** Sets the quaternion components from the given quaternion.
* @param quaternion The quaternion.
* @return This quaternion for chaining. */
public Quaternion set (Quaternion quaternion) {
return this.set(quaternion.x, quaternion.y, quaternion.z, quaternion.w);
}
/** Sets the quaternion components from the given axis and angle around that axis.
*
* @param axis The axis
* @param angle The angle in degrees
* @return This quaternion for chaining. */
public Quaternion set (Vector3 axis, float angle) {
return setFromAxis(axis.x, axis.y, axis.z, angle);
}
/** @return a copy of this quaternion */
public Quaternion cpy () {
return new Quaternion(this);
}
/** @return the euclidean length of the specified quaternion */
public final static float len (final float x, final float y, final float z, final float w) {
return (float)Math.sqrt(x * x + y * y + z * z + w * w);
}
/** @return the euclidean length of this quaternion */
public float len () {
return (float)Math.sqrt(x * x + y * y + z * z + w * w);
}
@Override
public String toString () {
return "[" + x + "|" + y + "|" + z + "|" + w + "]";
}
/** Sets the quaternion to the given euler angles in degrees.
* @param yaw the rotation around the y axis in degrees
* @param pitch the rotation around the x axis in degrees
* @param roll the rotation around the z axis degrees
* @return this quaternion */
public Quaternion setEulerAngles (float yaw, float pitch, float roll) {
return setEulerAnglesRad(yaw * MathUtils.degreesToRadians, pitch * MathUtils.degreesToRadians, roll
* MathUtils.degreesToRadians);
}
/** Sets the quaternion to the given euler angles in radians.
* @param yaw the rotation around the y axis in radians
* @param pitch the rotation around the x axis in radians
* @param roll the rotation around the z axis in radians
* @return this quaternion */
public Quaternion setEulerAnglesRad (float yaw, float pitch, float roll) {
final float hr = roll * 0.5f;
final float shr = (float)Math.sin(hr);
final float chr = (float)Math.cos(hr);
final float hp = pitch * 0.5f;
final float shp = (float)Math.sin(hp);
final float chp = (float)Math.cos(hp);
final float hy = yaw * 0.5f;
final float shy = (float)Math.sin(hy);
final float chy = (float)Math.cos(hy);
final float chy_shp = chy * shp;
final float shy_chp = shy * chp;
final float chy_chp = chy * chp;
final float shy_shp = shy * shp;
x = (chy_shp * chr) + (shy_chp * shr); // cos(yaw/2) * sin(pitch/2) * cos(roll/2) + sin(yaw/2) * cos(pitch/2) * sin(roll/2)
y = (shy_chp * chr) - (chy_shp * shr); // sin(yaw/2) * cos(pitch/2) * cos(roll/2) - cos(yaw/2) * sin(pitch/2) * sin(roll/2)
z = (chy_chp * shr) - (shy_shp * chr); // cos(yaw/2) * cos(pitch/2) * sin(roll/2) - sin(yaw/2) * sin(pitch/2) * cos(roll/2)
w = (chy_chp * chr) + (shy_shp * shr); // cos(yaw/2) * cos(pitch/2) * cos(roll/2) + sin(yaw/2) * sin(pitch/2) * sin(roll/2)
return this;
}
/** Get the pole of the gimbal lock, if any.
* @return positive (+1) for north pole, negative (-1) for south pole, zero (0) when no gimbal lock */
public int getGimbalPole () {
final float t = y * x + z * w;
return t > 0.499f ? 1 : (t < -0.499f ? -1 : 0);
}
/** Get the roll euler angle in radians, which is the rotation around the z axis. Requires that this quaternion is normalized.
* @return the rotation around the z axis in radians (between -PI and +PI) */
public float getRollRad () {
final int pole = getGimbalPole();
return pole == 0 ? MathUtils.atan2(2f * (w * z + y * x), 1f - 2f * (x * x + z * z)) : (float)pole * 2f
* MathUtils.atan2(y, w);
}
/** Get the roll euler angle in degrees, which is the rotation around the z axis. Requires that this quaternion is normalized.
* @return the rotation around the z axis in degrees (between -180 and +180) */
public float getRoll () {
return getRollRad() * MathUtils.radiansToDegrees;
}
/** Get the pitch euler angle in radians, which is the rotation around the x axis. Requires that this quaternion is normalized.
* @return the rotation around the x axis in radians (between -(PI/2) and +(PI/2)) */
public float getPitchRad () {
final int pole = getGimbalPole();
return pole == 0 ? (float)Math.asin(MathUtils.clamp(2f * (w * x - z * y), -1f, 1f)) : (float)pole * MathUtils.PI * 0.5f;
}
/** Get the pitch euler angle in degrees, which is the rotation around the x axis. Requires that this quaternion is normalized.
* @return the rotation around the x axis in degrees (between -90 and +90) */
public float getPitch () {
return getPitchRad() * MathUtils.radiansToDegrees;
}
/** Get the yaw euler angle in radians, which is the rotation around the y axis. Requires that this quaternion is normalized.
* @return the rotation around the y axis in radians (between -PI and +PI) */
public float getYawRad () {
return getGimbalPole() == 0 ? MathUtils.atan2(2f * (y * w + x * z), 1f - 2f * (y * y + x * x)) : 0f;
}
/** Get the yaw euler angle in degrees, which is the rotation around the y axis. Requires that this quaternion is normalized.
* @return the rotation around the y axis in degrees (between -180 and +180) */
public float getYaw () {
return getYawRad() * MathUtils.radiansToDegrees;
}
public final static float len2 (final float x, final float y, final float z, final float w) {
return x * x + y * y + z * z + w * w;
}
/** @return the length of this quaternion without square root */
public float len2 () {
return x * x + y * y + z * z + w * w;
}
/** Normalizes this quaternion to unit length
* @return the quaternion for chaining */
public Quaternion nor () {
float len = len2();
if (len != 0.f && !MathUtils.isEqual(len, 1f)) {
len = (float)Math.sqrt(len);
w /= len;
x /= len;
y /= len;
z /= len;
}
return this;
}
/** Conjugate the quaternion.
*
* @return This quaternion for chaining */
public Quaternion conjugate () {
x = -x;
y = -y;
z = -z;
return this;
}
// TODO : this would better fit into the vector3 class
/** Transforms the given vector using this quaternion
*
* @param v Vector to transform */
public Vector3 transform (Vector3 v) {
tmp2.set(this);
tmp2.conjugate();
tmp2.mulLeft(tmp1.set(v.x, v.y, v.z, 0)).mulLeft(this);
v.x = tmp2.x;
v.y = tmp2.y;
v.z = tmp2.z;
return v;
}
/** Multiplies this quaternion with another one in the form of this = this * other
*
* @param other Quaternion to multiply with
* @return This quaternion for chaining */
public Quaternion mul (final Quaternion other) {
final float newX = this.w * other.x + this.x * other.w + this.y * other.z - this.z * other.y;
final float newY = this.w * other.y + this.y * other.w + this.z * other.x - this.x * other.z;
final float newZ = this.w * other.z + this.z * other.w + this.x * other.y - this.y * other.x;
final float newW = this.w * other.w - this.x * other.x - this.y * other.y - this.z * other.z;
this.x = newX;
this.y = newY;
this.z = newZ;
this.w = newW;
return this;
}
/** Multiplies this quaternion with another one in the form of this = this * other
*
* @param x the x component of the other quaternion to multiply with
* @param y the y component of the other quaternion to multiply with
* @param z the z component of the other quaternion to multiply with
* @param w the w component of the other quaternion to multiply with
* @return This quaternion for chaining */
public Quaternion mul (final float x, final float y, final float z, final float w) {
final float newX = this.w * x + this.x * w + this.y * z - this.z * y;
final float newY = this.w * y + this.y * w + this.z * x - this.x * z;
final float newZ = this.w * z + this.z * w + this.x * y - this.y * x;
final float newW = this.w * w - this.x * x - this.y * y - this.z * z;
this.x = newX;
this.y = newY;
this.z = newZ;
this.w = newW;
return this;
}
/** Multiplies this quaternion with another one in the form of this = other * this
*
* @param other Quaternion to multiply with
* @return This quaternion for chaining */
public Quaternion mulLeft (Quaternion other) {
final float newX = other.w * this.x + other.x * this.w + other.y * this.z - other.z * y;
final float newY = other.w * this.y + other.y * this.w + other.z * this.x - other.x * z;
final float newZ = other.w * this.z + other.z * this.w + other.x * this.y - other.y * x;
final float newW = other.w * this.w - other.x * this.x - other.y * this.y - other.z * z;
this.x = newX;
this.y = newY;
this.z = newZ;
this.w = newW;
return this;
}
/** Multiplies this quaternion with another one in the form of this = other * this
*
* @param x the x component of the other quaternion to multiply with
* @param y the y component of the other quaternion to multiply with
* @param z the z component of the other quaternion to multiply with
* @param w the w component of the other quaternion to multiply with
* @return This quaternion for chaining */
public Quaternion mulLeft (final float x, final float y, final float z, final float w) {
final float newX = w * this.x + x * this.w + y * this.z - z * this.y;
final float newY = w * this.y + y * this.w + z * this.x - x * this.z;
final float newZ = w * this.z + z * this.w + x * this.y - y * this.x;
final float newW = w * this.w - x * this.x - y * this.y - z * this.z;
this.x = newX;
this.y = newY;
this.z = newZ;
this.w = newW;
return this;
}
/** Add the x,y,z,w components of the passed in quaternion to the ones of this quaternion */
public Quaternion add (Quaternion quaternion) {
this.x += quaternion.x;
this.y += quaternion.y;
this.z += quaternion.z;
this.w += quaternion.w;
return this;
}
/** Add the x,y,z,w components of the passed in quaternion to the ones of this quaternion */
public Quaternion add (float qx, float qy, float qz, float qw) {
this.x += qx;
this.y += qy;
this.z += qz;
this.w += qw;
return this;
}
// TODO : the matrix4 set(quaternion) doesnt set the last row+col of the matrix to 0,0,0,1 so... that's why there is this
// method
/** Fills a 4x4 matrix with the rotation matrix represented by this quaternion.
*
* @param matrix Matrix to fill */
public void toMatrix (final float[] matrix) {
final float xx = x * x;
final float xy = x * y;
final float xz = x * z;
final float xw = x * w;
final float yy = y * y;
final float yz = y * z;
final float yw = y * w;
final float zz = z * z;
final float zw = z * w;
// Set matrix from quaternion
matrix[Matrix4.M00] = 1 - 2 * (yy + zz);
matrix[Matrix4.M01] = 2 * (xy - zw);
matrix[Matrix4.M02] = 2 * (xz + yw);
matrix[Matrix4.M03] = 0;
matrix[Matrix4.M10] = 2 * (xy + zw);
matrix[Matrix4.M11] = 1 - 2 * (xx + zz);
matrix[Matrix4.M12] = 2 * (yz - xw);
matrix[Matrix4.M13] = 0;
matrix[Matrix4.M20] = 2 * (xz - yw);
matrix[Matrix4.M21] = 2 * (yz + xw);
matrix[Matrix4.M22] = 1 - 2 * (xx + yy);
matrix[Matrix4.M23] = 0;
matrix[Matrix4.M30] = 0;
matrix[Matrix4.M31] = 0;
matrix[Matrix4.M32] = 0;
matrix[Matrix4.M33] = 1;
}
/** Sets the quaternion to an identity Quaternion
* @return this quaternion for chaining */
public Quaternion idt () {
return this.set(0, 0, 0, 1);
}
/** @return If this quaternion is an identity Quaternion */
public boolean isIdentity () {
return MathUtils.isZero(x) && MathUtils.isZero(y) && MathUtils.isZero(z) && MathUtils.isEqual(w, 1f);
}
/** @return If this quaternion is an identity Quaternion */
public boolean isIdentity (final float tolerance) {
return MathUtils.isZero(x, tolerance) && MathUtils.isZero(y, tolerance) && MathUtils.isZero(z, tolerance)
&& MathUtils.isEqual(w, 1f, tolerance);
}
// todo : the setFromAxis(v3,float) method should replace the set(v3,float) method
/** Sets the quaternion components from the given axis and angle around that axis.
*
* @param axis The axis
* @param degrees The angle in degrees
* @return This quaternion for chaining. */
public Quaternion setFromAxis (final Vector3 axis, final float degrees) {
return setFromAxis(axis.x, axis.y, axis.z, degrees);
}
/** Sets the quaternion components from the given axis and angle around that axis.
*
* @param axis The axis
* @param radians The angle in radians
* @return This quaternion for chaining. */
public Quaternion setFromAxisRad (final Vector3 axis, final float radians) {
return setFromAxisRad(axis.x, axis.y, axis.z, radians);
}
/** Sets the quaternion components from the given axis and angle around that axis.
* @param x X direction of the axis
* @param y Y direction of the axis
* @param z Z direction of the axis
* @param degrees The angle in degrees
* @return This quaternion for chaining. */
public Quaternion setFromAxis (final float x, final float y, final float z, final float degrees) {
return setFromAxisRad(x, y, z, degrees * MathUtils.degreesToRadians);
}
/** Sets the quaternion components from the given axis and angle around that axis.
* @param x X direction of the axis
* @param y Y direction of the axis
* @param z Z direction of the axis
* @param radians The angle in radians
* @return This quaternion for chaining. */
public Quaternion setFromAxisRad (final float x, final float y, final float z, final float radians) {
float d = Vector3.len(x, y, z);
if (d == 0f) return idt();
d = 1f / d;
float l_ang = radians < 0 ? MathUtils.PI2 - (-radians % MathUtils.PI2) : radians % MathUtils.PI2;
float l_sin = (float)Math.sin(l_ang / 2);
float l_cos = (float)Math.cos(l_ang / 2);
return this.set(d * x * l_sin, d * y * l_sin, d * z * l_sin, l_cos).nor();
}
/** Sets the Quaternion from the given matrix, optionally removing any scaling. */
public Quaternion setFromMatrix (boolean normalizeAxes, Matrix4 matrix) {
return setFromAxes(normalizeAxes, matrix.val[Matrix4.M00], matrix.val[Matrix4.M01], matrix.val[Matrix4.M02],
matrix.val[Matrix4.M10], matrix.val[Matrix4.M11], matrix.val[Matrix4.M12], matrix.val[Matrix4.M20],
matrix.val[Matrix4.M21], matrix.val[Matrix4.M22]);
}
/** Sets the Quaternion from the given rotation matrix, which must not contain scaling. */
public Quaternion setFromMatrix (Matrix4 matrix) {
return setFromMatrix(false, matrix);
}
/** Sets the Quaternion from the given matrix, optionally removing any scaling. */
public Quaternion setFromMatrix (boolean normalizeAxes, Matrix3 matrix) {
return setFromAxes(normalizeAxes, matrix.val[Matrix3.M00], matrix.val[Matrix3.M01], matrix.val[Matrix3.M02],
matrix.val[Matrix3.M10], matrix.val[Matrix3.M11], matrix.val[Matrix3.M12], matrix.val[Matrix3.M20],
matrix.val[Matrix3.M21], matrix.val[Matrix3.M22]);
}
/** Sets the Quaternion from the given rotation matrix, which must not contain scaling. */
public Quaternion setFromMatrix (Matrix3 matrix) {
return setFromMatrix(false, matrix);
}
/**
* Sets the Quaternion from the given x-, y- and z-axis which have to be orthonormal.
*
*
*
* Taken from Bones framework for JPCT, see http://www.aptalkarga.com/bones/ which in turn took it from Graphics Gem code at
* ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z.
*
*
* @param xx x-axis x-coordinate
* @param xy x-axis y-coordinate
* @param xz x-axis z-coordinate
* @param yx y-axis x-coordinate
* @param yy y-axis y-coordinate
* @param yz y-axis z-coordinate
* @param zx z-axis x-coordinate
* @param zy z-axis y-coordinate
* @param zz z-axis z-coordinate */
public Quaternion setFromAxes (float xx, float xy, float xz, float yx, float yy, float yz, float zx, float zy, float zz) {
return setFromAxes(false, xx, xy, xz, yx, yy, yz, zx, zy, zz);
}
/**
* Sets the Quaternion from the given x-, y- and z-axis.
*
*
*
* Taken from Bones framework for JPCT, see http://www.aptalkarga.com/bones/ which in turn took it from Graphics Gem code at
* ftp://ftp.cis.upenn.edu/pub/graphics/shoemake/quatut.ps.Z.
*
*
* @param normalizeAxes whether to normalize the axes (necessary when they contain scaling)
* @param xx x-axis x-coordinate
* @param xy x-axis y-coordinate
* @param xz x-axis z-coordinate
* @param yx y-axis x-coordinate
* @param yy y-axis y-coordinate
* @param yz y-axis z-coordinate
* @param zx z-axis x-coordinate
* @param zy z-axis y-coordinate
* @param zz z-axis z-coordinate */
public Quaternion setFromAxes (boolean normalizeAxes, float xx, float xy, float xz, float yx, float yy, float yz, float zx,
float zy, float zz) {
if (normalizeAxes) {
final float lx = 1f / Vector3.len(xx, xy, xz);
final float ly = 1f / Vector3.len(yx, yy, yz);
final float lz = 1f / Vector3.len(zx, zy, zz);
xx *= lx;
xy *= lx;
xz *= lx;
yx *= ly;
yy *= ly;
yz *= ly;
zx *= lz;
zy *= lz;
zz *= lz;
}
// the trace is the sum of the diagonal elements; see
// http://mathworld.wolfram.com/MatrixTrace.html
final float t = xx + yy + zz;
// we protect the division by s by ensuring that s>=1
if (t >= 0) { // |w| >= .5
float s = (float)Math.sqrt(t + 1); // |s|>=1 ...
w = 0.5f * s;
s = 0.5f / s; // so this division isn't bad
x = (zy - yz) * s;
y = (xz - zx) * s;
z = (yx - xy) * s;
} else if ((xx > yy) && (xx > zz)) {
float s = (float)Math.sqrt(1.0 + xx - yy - zz); // |s|>=1
x = s * 0.5f; // |x| >= .5
s = 0.5f / s;
y = (yx + xy) * s;
z = (xz + zx) * s;
w = (zy - yz) * s;
} else if (yy > zz) {
float s = (float)Math.sqrt(1.0 + yy - xx - zz); // |s|>=1
y = s * 0.5f; // |y| >= .5
s = 0.5f / s;
x = (yx + xy) * s;
z = (zy + yz) * s;
w = (xz - zx) * s;
} else {
float s = (float)Math.sqrt(1.0 + zz - xx - yy); // |s|>=1
z = s * 0.5f; // |z| >= .5
s = 0.5f / s;
x = (xz + zx) * s;
y = (zy + yz) * s;
w = (yx - xy) * s;
}
return this;
}
/** Set this quaternion to the rotation between two vectors.
* @param v1 The base vector, which should be normalized.
* @param v2 The target vector, which should be normalized.
* @return This quaternion for chaining */
public Quaternion setFromCross (final Vector3 v1, final Vector3 v2) {
final float dot = MathUtils.clamp(v1.dot(v2), -1f, 1f);
final float angle = (float)Math.acos(dot);
return setFromAxisRad(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x, angle);
}
/** Set this quaternion to the rotation between two vectors.
* @param x1 The base vectors x value, which should be normalized.
* @param y1 The base vectors y value, which should be normalized.
* @param z1 The base vectors z value, which should be normalized.
* @param x2 The target vector x value, which should be normalized.
* @param y2 The target vector y value, which should be normalized.
* @param z2 The target vector z value, which should be normalized.
* @return This quaternion for chaining */
public Quaternion setFromCross (final float x1, final float y1, final float z1, final float x2, final float y2, final float z2) {
final float dot = MathUtils.clamp(Vector3.dot(x1, y1, z1, x2, y2, z2), -1f, 1f);
final float angle = (float)Math.acos(dot);
return setFromAxisRad(y1 * z2 - z1 * y2, z1 * x2 - x1 * z2, x1 * y2 - y1 * x2, angle);
}
/** Spherical linear interpolation between this quaternion and the other quaternion, based on the alpha value in the range
* [0,1]. Taken from Bones framework for JPCT, see http://www.aptalkarga.com/bones/
* @param end the end quaternion
* @param alpha alpha in the range [0,1]
* @return this quaternion for chaining */
public Quaternion slerp (Quaternion end, float alpha) {
final float d = this.x * end.x + this.y * end.y + this.z * end.z + this.w * end.w;
float absDot = d < 0.f ? -d : d;
// Set the first and second scale for the interpolation
float scale0 = 1f - alpha;
float scale1 = alpha;
// Check if the angle between the 2 quaternions was big enough to
// warrant such calculations
if ((1 - absDot) > 0.1) {// Get the angle between the 2 quaternions,
// and then store the sin() of that angle
final float angle = (float)Math.acos(absDot);
final float invSinTheta = 1f / (float)Math.sin(angle);
// Calculate the scale for q1 and q2, according to the angle and
// it's sine value
scale0 = ((float)Math.sin((1f - alpha) * angle) * invSinTheta);
scale1 = ((float)Math.sin((alpha * angle)) * invSinTheta);
}
if (d < 0.f) scale1 = -scale1;
// Calculate the x, y, z and w values for the quaternion by using a
// special form of linear interpolation for quaternions.
x = (scale0 * x) + (scale1 * end.x);
y = (scale0 * y) + (scale1 * end.y);
z = (scale0 * z) + (scale1 * end.z);
w = (scale0 * w) + (scale1 * end.w);
// Return the interpolated quaternion
return this;
}
/** Spherical linearly interpolates multiple quaternions and stores the result in this Quaternion. Will not destroy the data
* previously inside the elements of q. result = (q_1^w_1)*(q_2^w_2)* ... *(q_n^w_n) where w_i=1/n.
* @param q List of quaternions
* @return This quaternion for chaining */
public Quaternion slerp (Quaternion[] q) {
// Calculate exponents and multiply everything from left to right
final float w = 1.0f / q.length;
set(q[0]).exp(w);
for (int i = 1; i < q.length; i++)
mul(tmp1.set(q[i]).exp(w));
nor();
return this;
}
/** Spherical linearly interpolates multiple quaternions by the given weights and stores the result in this Quaternion. Will not
* destroy the data previously inside the elements of q or w. result = (q_1^w_1)*(q_2^w_2)* ... *(q_n^w_n) where the sum of w_i
* is 1. Lists must be equal in length.
* @param q List of quaternions
* @param w List of weights
* @return This quaternion for chaining */
public Quaternion slerp (Quaternion[] q, float[] w) {
// Calculate exponents and multiply everything from left to right
set(q[0]).exp(w[0]);
for (int i = 1; i < q.length; i++)
mul(tmp1.set(q[i]).exp(w[i]));
nor();
return this;
}
/** Calculates (this quaternion)^alpha where alpha is a real number and stores the result in this quaternion. See
* http://en.wikipedia.org/wiki/Quaternion#Exponential.2C_logarithm.2C_and_power
* @param alpha Exponent
* @return This quaternion for chaining */
public Quaternion exp (float alpha) {
// Calculate |q|^alpha
float norm = len();
float normExp = (float)Math.pow(norm, alpha);
// Calculate theta
float theta = (float)Math.acos(w / norm);
// Calculate coefficient of basis elements
float coeff = 0;
if (Math.abs(theta) < 0.001) // If theta is small enough, use the limit of sin(alpha*theta) / sin(theta) instead of actual
// value
coeff = normExp * alpha / norm;
else
coeff = (float)(normExp * Math.sin(alpha * theta) / (norm * Math.sin(theta)));
// Write results
w = (float)(normExp * Math.cos(alpha * theta));
x *= coeff;
y *= coeff;
z *= coeff;
// Fix any possible discrepancies
nor();
return this;
}
@Override
public int hashCode () {
final int prime = 31;
int result = 1;
result = prime * result + NumberUtils.floatToRawIntBits(w);
result = prime * result + NumberUtils.floatToRawIntBits(x);
result = prime * result + NumberUtils.floatToRawIntBits(y);
result = prime * result + NumberUtils.floatToRawIntBits(z);
return result;
}
@Override
public boolean equals (Object obj) {
if (this == obj) {
return true;
}
if (obj == null) {
return false;
}
if (!(obj instanceof Quaternion)) {
return false;
}
Quaternion other = (Quaternion)obj;
return (NumberUtils.floatToRawIntBits(w) == NumberUtils.floatToRawIntBits(other.w))
&& (NumberUtils.floatToRawIntBits(x) == NumberUtils.floatToRawIntBits(other.x))
&& (NumberUtils.floatToRawIntBits(y) == NumberUtils.floatToRawIntBits(other.y))
&& (NumberUtils.floatToRawIntBits(z) == NumberUtils.floatToRawIntBits(other.z));
}
/** Get the dot product between the two quaternions (commutative).
* @param x1 the x component of the first quaternion
* @param y1 the y component of the first quaternion
* @param z1 the z component of the first quaternion
* @param w1 the w component of the first quaternion
* @param x2 the x component of the second quaternion
* @param y2 the y component of the second quaternion
* @param z2 the z component of the second quaternion
* @param w2 the w component of the second quaternion
* @return the dot product between the first and second quaternion. */
public final static float dot (final float x1, final float y1, final float z1, final float w1, final float x2, final float y2,
final float z2, final float w2) {
return x1 * x2 + y1 * y2 + z1 * z2 + w1 * w2;
}
/** Get the dot product between this and the other quaternion (commutative).
* @param other the other quaternion.
* @return the dot product of this and the other quaternion. */
public float dot (final Quaternion other) {
return this.x * other.x + this.y * other.y + this.z * other.z + this.w * other.w;
}
/** Get the dot product between this and the other quaternion (commutative).
* @param x the x component of the other quaternion
* @param y the y component of the other quaternion
* @param z the z component of the other quaternion
* @param w the w component of the other quaternion
* @return the dot product of this and the other quaternion. */
public float dot (final float x, final float y, final float z, final float w) {
return this.x * x + this.y * y + this.z * z + this.w * w;
}
/** Multiplies the components of this quaternion with the given scalar.
* @param scalar the scalar.
* @return this quaternion for chaining. */
public Quaternion mul (float scalar) {
this.x *= scalar;
this.y *= scalar;
this.z *= scalar;
this.w *= scalar;
return this;
}
/** Get the axis angle representation of the rotation in degrees. The supplied vector will receive the axis (x, y and z values)
* of the rotation and the value returned is the angle in degrees around that axis. Note that this method will alter the
* supplied vector, the existing value of the vector is ignored. This will normalize this quaternion if needed. The
* received axis is a unit vector. However, if this is an identity quaternion (no rotation), then the length of the axis may be
* zero.
*
* @param axis vector which will receive the axis
* @return the angle in degrees
* @see wikipedia
* @see calculation */
public float getAxisAngle (Vector3 axis) {
return getAxisAngleRad(axis) * MathUtils.radiansToDegrees;
}
/** Get the axis-angle representation of the rotation in radians. The supplied vector will receive the axis (x, y and z values)
* of the rotation and the value returned is the angle in radians around that axis. Note that this method will alter the
* supplied vector, the existing value of the vector is ignored. This will normalize this quaternion if needed. The
* received axis is a unit vector. However, if this is an identity quaternion (no rotation), then the length of the axis may be
* zero.
*
* @param axis vector which will receive the axis
* @return the angle in radians
* @see wikipedia
* @see calculation */
public float getAxisAngleRad (Vector3 axis) {
if (this.w > 1) this.nor(); // if w>1 acos and sqrt will produce errors, this cant happen if quaternion is normalised
float angle = (float)(2.0 * Math.acos(this.w));
double s = Math.sqrt(1 - this.w * this.w); // assuming quaternion normalised then w is less than 1, so term always positive.
if (s < MathUtils.FLOAT_ROUNDING_ERROR) { // test to avoid divide by zero, s is always positive due to sqrt
// if s close to zero then direction of axis not important
axis.x = this.x; // if it is important that axis is normalised then replace with x=1; y=z=0;
axis.y = this.y;
axis.z = this.z;
} else {
axis.x = (float)(this.x / s); // normalise axis
axis.y = (float)(this.y / s);
axis.z = (float)(this.z / s);
}
return angle;
}
/** Get the angle in radians of the rotation this quaternion represents. Does not normalize the quaternion. Use
* {@link #getAxisAngleRad(Vector3)} to get both the axis and the angle of this rotation. Use
* {@link #getAngleAroundRad(Vector3)} to get the angle around a specific axis.
* @return the angle in radians of the rotation */
public float getAngleRad () {
return (float)(2.0 * Math.acos((this.w > 1) ? (this.w / len()) : this.w));
}
/** Get the angle in degrees of the rotation this quaternion represents. Use {@link #getAxisAngle(Vector3)} to get both the axis
* and the angle of this rotation. Use {@link #getAngleAround(Vector3)} to get the angle around a specific axis.
* @return the angle in degrees of the rotation */
public float getAngle () {
return getAngleRad() * MathUtils.radiansToDegrees;
}
/** Get the swing rotation and twist rotation for the specified axis. The twist rotation represents the rotation around the
* specified axis. The swing rotation represents the rotation of the specified axis itself, which is the rotation around an
* axis perpendicular to the specified axis. The swing and twist rotation can be used to reconstruct the original
* quaternion: this = swing * twist
*
* @param axisX the X component of the normalized axis for which to get the swing and twist rotation
* @param axisY the Y component of the normalized axis for which to get the swing and twist rotation
* @param axisZ the Z component of the normalized axis for which to get the swing and twist rotation
* @param swing will receive the swing rotation: the rotation around an axis perpendicular to the specified axis
* @param twist will receive the twist rotation: the rotation around the specified axis
* @see calculation */
public void getSwingTwist (final float axisX, final float axisY, final float axisZ, final Quaternion swing,
final Quaternion twist) {
final float d = Vector3.dot(this.x, this.y, this.z, axisX, axisY, axisZ);
twist.set(axisX * d, axisY * d, axisZ * d, this.w).nor();
if (d < 0) twist.mul(-1f);
swing.set(twist).conjugate().mulLeft(this);
}
/** Get the swing rotation and twist rotation for the specified axis. The twist rotation represents the rotation around the
* specified axis. The swing rotation represents the rotation of the specified axis itself, which is the rotation around an
* axis perpendicular to the specified axis. The swing and twist rotation can be used to reconstruct the original
* quaternion: this = swing * twist
*
* @param axis the normalized axis for which to get the swing and twist rotation
* @param swing will receive the swing rotation: the rotation around an axis perpendicular to the specified axis
* @param twist will receive the twist rotation: the rotation around the specified axis
* @see calculation */
public void getSwingTwist (final Vector3 axis, final Quaternion swing, final Quaternion twist) {
getSwingTwist(axis.x, axis.y, axis.z, swing, twist);
}
/** Get the angle in radians of the rotation around the specified axis. The axis must be normalized.
* @param axisX the x component of the normalized axis for which to get the angle
* @param axisY the y component of the normalized axis for which to get the angle
* @param axisZ the z component of the normalized axis for which to get the angle
* @return the angle in radians of the rotation around the specified axis */
public float getAngleAroundRad (final float axisX, final float axisY, final float axisZ) {
final float d = Vector3.dot(this.x, this.y, this.z, axisX, axisY, axisZ);
final float l2 = Quaternion.len2(axisX * d, axisY * d, axisZ * d, this.w);
return MathUtils.isZero(l2) ? 0f : (float)(2.0 * Math.acos(MathUtils.clamp(
(float)((d < 0 ? -this.w : this.w) / Math.sqrt(l2)), -1f, 1f)));
}
/** Get the angle in radians of the rotation around the specified axis. The axis must be normalized.
* @param axis the normalized axis for which to get the angle
* @return the angle in radians of the rotation around the specified axis */
public float getAngleAroundRad (final Vector3 axis) {
return getAngleAroundRad(axis.x, axis.y, axis.z);
}
/** Get the angle in degrees of the rotation around the specified axis. The axis must be normalized.
* @param axisX the x component of the normalized axis for which to get the angle
* @param axisY the y component of the normalized axis for which to get the angle
* @param axisZ the z component of the normalized axis for which to get the angle
* @return the angle in degrees of the rotation around the specified axis */
public float getAngleAround (final float axisX, final float axisY, final float axisZ) {
return getAngleAroundRad(axisX, axisY, axisZ) * MathUtils.radiansToDegrees;
}
/** Get the angle in degrees of the rotation around the specified axis. The axis must be normalized.
* @param axis the normalized axis for which to get the angle
* @return the angle in degrees of the rotation around the specified axis */
public float getAngleAround (final Vector3 axis) {
return getAngleAround(axis.x, axis.y, axis.z);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy