org.mitre.caasd.commons.math.VisvalingamSplitter Maven / Gradle / Ivy
/*
* Copyright 2022 The MITRE Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.mitre.caasd.commons.math;
import static com.google.common.base.Preconditions.checkArgument;
import static java.util.stream.Collectors.toCollection;
import java.util.ArrayList;
import java.util.List;
import com.google.common.primitives.Ints;
/**
* A VisvalingamSplitter partitions a Dataset by using the "simplified" Dataset provided by a
* VisvalingamSimplifier.
*/
public class VisvalingamSplitter implements DataSplitter {
private final VisvalingamSimplifier simplifier;
private final double IMPORTANT_TRIANGLE_THRESHOLD;
/**
* Create a DataSplitter that uses the points identified by Visvalingam's Algorithm (via a
* VisvalingamSimplifier) to partition the data.
*
* @param importantTriangleThreshold Choose the value based on the dimensions of the input X and
* Y data. The smaller this threshold is the finer the
* resulting splits are (i.e. the VisvalingamSimplifier
* retains more detail so more splits are found). If this
* value is set high enough no splits will be found.
*/
public VisvalingamSplitter(double importantTriangleThreshold) {
checkArgument(importantTriangleThreshold >= 0.0);
this.simplifier = new VisvalingamSimplifier();
this.IMPORTANT_TRIANGLE_THRESHOLD = importantTriangleThreshold;
}
@Override
public int[] computeSplitsFor(List xData, List yData) {
XyDataset data = new XyDataset(xData, yData);
// identifies the most "visually important" points in the graph
XyDataset keyPoints = simplifier.simplify(data, IMPORTANT_TRIANGLE_THRESHOLD);
ArrayList indicesOfKeyPoints =
keyPoints.xData().stream().map(xValue -> xData.indexOf(xValue)).collect(toCollection(ArrayList::new));
/*
* Increment the very last index value so you don't drop the very last piece of data.
*
* The goal is to support calls like "xData.subList(result[i], result[i+1])"
*/
int n = indicesOfKeyPoints.size();
int prior = indicesOfKeyPoints.get(n - 1);
indicesOfKeyPoints.set(n - 1, prior + 1);
return Ints.toArray(indicesOfKeyPoints);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy