All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.mobicents.media.server.component.audio.Complex Maven / Gradle / Ivy

There is a newer version: 6.0.23
Show newest version
/*
 * JBoss, Home of Professional Open Source
 * Copyright 2011, Red Hat, Inc. and individual contributors
 * by the @authors tag. See the copyright.txt in the distribution for a
 * full listing of individual contributors.
 *
 * This is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this software; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 * 02110-1301 USA, or see the FSF site: http://www.fsf.org.
 */

package org.mobicents.media.server.component.audio;

public class Complex {
    private final double re;   // the real part
    private final double im;   // the imaginary part

    // create a new object with the given real and imaginary parts
    public Complex(double real, double imag) {
        re = real;
        im = imag;
    }
    // return a string representation of the invoking Complex object
    @Override
    public String toString() {
        if (im == 0) return re + "";
        if (re == 0) return im + "i";
        if (im <  0) return re + " - " + (-im) + "i";
        return re + " + " + im + "i";
    }

    // return abs/modulus/magnitude and angle/phase/argument
    public double abs()   { return Math.hypot(re, im); }  // Math.sqrt(re*re + im*im)
    public double phase() { return Math.atan2(im, re); }  // between -pi and pi

    // return a new Complex object whose value is (this + b)
    public Complex plus(Complex b) {
        Complex a = this;             // invoking object
        double real = a.re + b.re;
        double imag = a.im + b.im;
        return new Complex(real, imag);
    }

    // return a new Complex object whose value is (this - b)
    public Complex minus(Complex b) {
        Complex a = this;
        double real = a.re - b.re;
        double imag = a.im - b.im;
        return new Complex(real, imag);
    }

    // return a new Complex object whose value is (this * b)
    public Complex times(Complex b) {
        Complex a = this;
        double real = a.re * b.re - a.im * b.im;
        double imag = a.re * b.im + a.im * b.re;
        return new Complex(real, imag);
    }

    // scalar multiplication
    // return a new object whose value is (this * alpha)
    public Complex times(double alpha) {
        return new Complex(alpha * re, alpha * im);
    }

    // return a new Complex object whose value is the conjugate of this
    public Complex conjugate() {  return new Complex(re, -im); }

    // return a new Complex object whose value is the reciprocal of this
    public Complex reciprocal() {
        double scale = re*re + im*im;
        return new Complex(re / scale, -im / scale);
    }

    // return the real or imaginary part
    public double re() { return re; }
    public double im() { return im; }

    // return a / b
    public Complex divides(Complex b) {
        Complex a = this;
        return a.times(b.reciprocal());
    }

    // return a new Complex object whose value is the complex exponential of this
    public Complex exp() {
        return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
    }

    // return a new Complex object whose value is the complex sine of this
    public Complex sin() {
        return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
    }

    // return a new Complex object whose value is the complex cosine of this
    public Complex cos() {
        return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
    }

    // return a new Complex object whose value is the complex tangent of this
    public Complex tan() {
        return sin().divides(cos());
    }
    


    // a static version of plus
    public static Complex plus(Complex a, Complex b) {
        double real = a.re + b.re;
        double imag = a.im + b.im;
        Complex sum = new Complex(real, imag);
        return sum;
    }



}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy