All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.modeshape.jcr.RepositoryStatistics Maven / Gradle / Ivy

There is a newer version: 5.4.1.Final
Show newest version
/*
 * ModeShape (http://www.modeshape.org)
 * See the COPYRIGHT.txt file distributed with this work for information
 * regarding copyright ownership.  Some portions may be licensed
 * to Red Hat, Inc. under one or more contributor license agreements.
 * See the AUTHORS.txt file in the distribution for a full listing of 
 * individual contributors.
 *
 * ModeShape is free software. Unless otherwise indicated, all code in ModeShape
 * is licensed to you under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 * 
 * ModeShape is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this software; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 * 02110-1301 USA, or see the FSF site: http://www.fsf.org.
 */
package org.modeshape.jcr;

import java.util.ArrayList;
import java.util.EnumSet;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.PriorityBlockingQueue;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import org.modeshape.common.SystemFailureException;
import org.modeshape.common.annotation.Immutable;
import org.modeshape.common.annotation.ThreadSafe;
import org.modeshape.common.text.Inflector;
import org.modeshape.common.util.StringUtil;
import org.modeshape.jcr.api.monitor.DurationActivity;
import org.modeshape.jcr.api.monitor.DurationMetric;
import org.modeshape.jcr.api.monitor.History;
import org.modeshape.jcr.api.monitor.RepositoryMonitor;
import org.modeshape.jcr.api.monitor.Statistics;
import org.modeshape.jcr.api.monitor.ValueMetric;
import org.modeshape.jcr.api.monitor.Window;
import org.modeshape.jcr.api.value.DateTime;
import org.modeshape.jcr.value.DateTimeFactory;

/**
 * A component that records statistics for a variety of repository metrics, and makes the statistics available for a variety of
 * windows. The value metrics currently include:
 * 
    *
  1. {@link ValueMetric#SESSION_COUNT active sessions} - the number of sessions that are open during the window;
  2. *
  3. {@link ValueMetric#QUERY_COUNT active queries} - the number of queries that were executing during the window;
  4. *
  5. {@link ValueMetric#WORKSPACE_COUNT workspaces} - the number of workspaces in existence during the window;
  6. *
  7. {@link ValueMetric#LISTENER_COUNT listeners} - the number of listeners registered during the window;
  8. *
  9. {@link ValueMetric#SESSION_SCOPED_LOCK_COUNT session-scoped locks} - the number of locks held by sessions during the * window;
  10. *
  11. {@link ValueMetric#OPEN_SCOPED_LOCK_COUNT non-scoped locks} - the number of non-scoped locks held during the window; *
  12. *
  13. {@link ValueMetric#SESSION_SAVES save operations} - the number of Session save operations performed the window;
  14. *
  15. {@link ValueMetric#NODE_CHANGES changed nodes} - the number of nodes that were created, updated, or deleted during * the window;
  16. *
* and the metrics that record durations include: *
    *
  1. {@link DurationMetric#SESSION_LIFETIME session lifetime} - the duration of the sessions closed during the window;
  2. *
  3. {@link DurationMetric#QUERY_EXECUTION_TIME query execution time} - the duration of queries that finished during the * window;
  4. *
  5. {@link DurationMetric#SEQUENCER_EXECUTION_TIME sequencer execution time} - the duration of sequencing operations * completed during the window;
  6. *
* This class provides a way to obtain the {@link History history} for a particular metric during a specified window, where the * window is comprised of the {@link Statistics statistics} (the average value, minimum value, maximum value, variance, standard * deviation, number of samples, and time interval of the statistics) for: *
    *
  1. each ten 5-second intervals during the last minute (60 seconds); or
  2. *
  3. each minute during the last hour (60 minutes); or
  4. *
  5. each hour during the last day (24 hours); or
  6. *
  7. each day during the last week (7 days); or
  8. *
  9. each week during the last year (52 weeks)
  10. *
*

* To use, simply instantiate and {@link #start(ScheduledExecutorService) start} it by supplying a * {@link ScheduledExecutorService} instance, which is used to create a periodic task that runs every 5 seconds to roll up * measured metrics into the various statistic windows. When completed, simply call {@link #stop()} to have the object clean up * after itself. *

*/ @ThreadSafe public class RepositoryStatistics implements RepositoryMonitor { /** * The maximum number of longest-running queries to retain. */ public static final int MAXIMUM_LONG_RUNNING_QUERY_COUNT = 15; /** * The maximum number of longest-running sequencing operations to retain. */ public static final int MAXIMUM_LONG_RUNNING_SEQUENCING_COUNT = 15; /** * The maximum number of longest-running sessions to retain. Note that all active sessions (those that are not logged out) are * excluded from this list. */ public static final int MAXIMUM_LONG_RUNNING_SESSION_COUNT = 15; /** * The frequency at which the metric values are rolled into statistics. */ public static final long CAPTURE_INTERVAL_IN_SECONDS = 5L; private static final long CAPTURE_DELAY_IN_SECONDS = 5L; protected static final long DURATION_OF_52_WEEKS_WINDOW_IN_SECONDS = TimeUnit.SECONDS.convert(MetricHistory.MAX_WEEKS, TimeUnit.DAYS) / 7; protected static final long DURATION_OF_7_DAYS_WINDOW_IN_SECONDS = TimeUnit.SECONDS.convert(MetricHistory.MAX_DAYS, TimeUnit.DAYS); protected static final long DURATION_OF_24_HOURS_WINDOW_IN_SECONDS = TimeUnit.SECONDS.convert(MetricHistory.MAX_HOURS, TimeUnit.HOURS); protected static final long DURATION_OF_60_MINUTES_WINDOW_IN_SECONDS = TimeUnit.SECONDS.convert(MetricHistory.MAX_MINUTES, TimeUnit.MINUTES); protected static final long DURATION_OF_60_SECONDS_WINDOW_IN_SECONDS = TimeUnit.SECONDS.convert(MetricHistory.MAX_SECONDS * CAPTURE_INTERVAL_IN_SECONDS, TimeUnit.SECONDS); private final ConcurrentMap durations = new ConcurrentHashMap(); private final ConcurrentMap values = new ConcurrentHashMap(); private final AtomicReference> rollupFuture = new AtomicReference>(); private final DateTimeFactory timeFactory; private final AtomicReference secondsStartTime = new AtomicReference(); private final AtomicReference minutesStartTime = new AtomicReference(); private final AtomicReference hoursStartTime = new AtomicReference(); private final AtomicReference daysStartTime = new AtomicReference(); private final AtomicReference weeksStartTime = new AtomicReference(); RepositoryStatistics( ExecutionContext context ) { this.timeFactory = context.getValueFactories().getDateFactory(); } /** * Start recording statistics. * * @param service the executor service that should be used to capture the statistics; may not be null */ void start( ScheduledExecutorService service ) { if (rollupFuture.get() != null) { // already started ... return; } // Pre-populate the metrics (overwriting any existing history object) ... durations.put(DurationMetric.QUERY_EXECUTION_TIME, new DurationHistory(TimeUnit.MILLISECONDS, MAXIMUM_LONG_RUNNING_QUERY_COUNT)); durations.put(DurationMetric.SEQUENCER_EXECUTION_TIME, new DurationHistory(TimeUnit.MILLISECONDS, MAXIMUM_LONG_RUNNING_SEQUENCING_COUNT)); durations.put(DurationMetric.SESSION_LIFETIME, new DurationHistory(TimeUnit.MILLISECONDS, MAXIMUM_LONG_RUNNING_SESSION_COUNT)); for (ValueMetric metric : EnumSet.allOf(ValueMetric.class)) { boolean resetUponRollup = !metric.isContinuous(); values.put(metric, new ValueHistory(resetUponRollup)); } // Initialize the start times in a threadsafe manner ... DateTime now = timeFactory.create(); this.weeksStartTime.compareAndSet(null, now); this.daysStartTime.compareAndSet(null, now); this.hoursStartTime.compareAndSet(null, now); this.minutesStartTime.compareAndSet(null, now); this.secondsStartTime.compareAndSet(null, now); rollup(); // Then schedule the rollup to be done at a fixed rate ... this.rollupFuture.set(service.scheduleAtFixedRate(new Runnable() { @SuppressWarnings( "synthetic-access" ) @Override public void run() { rollup(); } }, CAPTURE_DELAY_IN_SECONDS, CAPTURE_INTERVAL_IN_SECONDS, TimeUnit.SECONDS)); } /** * Stop recording statistics. */ void stop() { ScheduledFuture future = this.rollupFuture.getAndSet(null); if (future != null && !future.isDone() && !future.isCancelled()) { // Stop running the scheduled job, letting any currently running rollup finish ... future.cancel(false); } } /** * Method called once every second by the scheduled job. * * @see #start(ScheduledExecutorService) */ @SuppressWarnings( "fallthrough" ) private void rollup() { DateTime now = timeFactory.create(); Window largest = null; for (DurationHistory history : durations.values()) { largest = history.rollup(); } for (ValueHistory history : values.values()) { largest = history.rollup(); } // Note that we do expect to fall through, as the 'largest' represents the largest window that was changed, // while all smaller windows were also changed ... switch (largest) { case PREVIOUS_52_WEEKS: this.weeksStartTime.set(now); // fall through!! case PREVIOUS_7_DAYS: this.daysStartTime.set(now); // fall through!! case PREVIOUS_24_HOURS: this.hoursStartTime.set(now); // fall through!! case PREVIOUS_60_MINUTES: this.minutesStartTime.set(now); // fall through!! case PREVIOUS_60_SECONDS: this.secondsStartTime.set(now); } } private final DateTime mostRecentTimeFor( Window window ) { switch (window) { case PREVIOUS_52_WEEKS: return this.weeksStartTime.get(); case PREVIOUS_7_DAYS: return this.daysStartTime.get(); case PREVIOUS_24_HOURS: return this.hoursStartTime.get(); case PREVIOUS_60_MINUTES: return this.minutesStartTime.get(); case PREVIOUS_60_SECONDS: return this.secondsStartTime.get(); } throw new SystemFailureException("Should never happen"); } @Override public Set getAvailableDurationMetrics() { return RepositoryMonitor.ALL_DURATION_METRICS; } @Override public Set getAvailableValueMetrics() { return RepositoryMonitor.ALL_VALUE_METRICS; } @Override public Set getAvailableWindows() { return RepositoryMonitor.ALL_WINDOWS; } @Override public History getHistory( ValueMetric metric, Window windowInTime ) { assert metric != null; assert windowInTime != null; ValueHistory history = values.get(metric); Statistics[] stats = history != null ? history.getHistory(windowInTime) : Statistics.NO_STATISTICS; return new HistoryImpl(stats, mostRecentTimeFor(windowInTime), windowInTime); } @Override public History getHistory( DurationMetric metric, Window windowInTime ) { assert metric != null; assert windowInTime != null; DurationHistory history = durations.get(metric); Statistics[] stats = history != null ? history.getHistory(windowInTime) : Statistics.NO_STATISTICS; return new HistoryImpl(stats, mostRecentTimeFor(windowInTime), windowInTime); } @Override public DurationActivity[] getLongestRunning( DurationMetric metric ) { assert metric != null; DurationHistory history = durations.get(metric); return history != null ? history.getLongestRunning() : DurationActivity.NO_DURATION_RECORDS; } /** * Record an incremental change to a value, called by the code that knows when and how the metric changes. * * @param metric the metric; may not be null * @param incrementalValue the positive or negative increment * @see #increment(ValueMetric) * @see #decrement(ValueMetric) * @see #recordDuration(DurationMetric, long, TimeUnit, Map) */ void increment( ValueMetric metric, long incrementalValue ) { assert metric != null; ValueHistory history = values.get(metric); if (history != null) history.recordIncrement(incrementalValue); } /** * Record an increment in a value, called by the code that knows when and how the metric changes. * * @param metric the metric; may not be null * @see #increment(ValueMetric, long) * @see #decrement(ValueMetric) * @see #recordDuration(DurationMetric, long, TimeUnit, Map) */ void increment( ValueMetric metric ) { assert metric != null; ValueHistory history = values.get(metric); if (history != null) history.recordIncrement(1L); } /** * Record a specific value for a metric, called by the code that knows when and how the metric changes. * * @param metric the metric; may not be null * @param value the value for the metric * @see #increment(ValueMetric, long) * @see #decrement(ValueMetric) * @see #recordDuration(DurationMetric, long, TimeUnit, Map) */ void set( ValueMetric metric, long value ) { assert metric != null; ValueHistory history = values.get(metric); if (history != null) history.recordNewValue(1L); } /** * Record an decrement in a value, called by the code that knows when and how the metric changes. * * @param metric the metric; may not be null * @see #increment(ValueMetric) * @see #increment(ValueMetric, long) * @see #recordDuration(DurationMetric, long, TimeUnit, Map) */ void decrement( ValueMetric metric ) { assert metric != null; ValueHistory history = values.get(metric); if (history != null) history.recordIncrement(-1L); } /** * Record a new duration for the given metric, called by the code that knows about the duration. * * @param metric the metric; may not be null * @param duration the duration * @param timeUnit the time unit of the duration * @param payload the payload; may be null or a lightweight representation of the activity described by the duration * @see #increment(ValueMetric) * @see #increment(ValueMetric, long) * @see #decrement(ValueMetric) */ void recordDuration( DurationMetric metric, long duration, TimeUnit timeUnit, Map payload ) { assert metric != null; DurationHistory history = durations.get(metric); if (history != null) history.recordDuration(duration, timeUnit, payload); } /** * Abstract base class for the {@link ValueHistory} and {@link DurationHistory} classes. This class tracks the statistics for * various periods of time, and to roll up the statistics. The design takes advantage of the fact that we know up front how * many statistics to keep for each {@link Window window}, and uses a fixed-size array as a ring of ordered values. It also is * designed to minimize lock contention. *

* Each instance of this class consumes 5x4bytes for the integer couters, 5x8bytes for the references to the arrays, and * 143x8byte references to the Statistics objects (for a total of 1204 bytes). Each Statistics instances consumes 36 bytes * (1x4byte integer, 2x8byte longs, 2x8byte doubles), so 149 instances consumes 5364bytes. Thus the total memory required for * a single MetricHistory instance is 6568 bytes (6.41kB). *

*

* So ten metrics require 64.1kB of memory, assuming the repository has been running for 52 weeks. (If not, then not all of * the Statistics arrays will be filled.) *

*/ @ThreadSafe protected static abstract class MetricHistory { protected static final int MAX_SECONDS = 60 / (int)CAPTURE_INTERVAL_IN_SECONDS; protected static final int MAX_MINUTES = 60; protected static final int MAX_HOURS = 24; protected static final int MAX_DAYS = 7; protected static final int MAX_WEEKS = 52; private final Statistics[] seconds = new Statistics[MAX_SECONDS]; private final Statistics[] minutes = new Statistics[MAX_MINUTES]; private final Statistics[] hours = new Statistics[MAX_HOURS]; private final Statistics[] days = new Statistics[MAX_DAYS]; private final Statistics[] weeks = new Statistics[MAX_WEEKS]; private int currentSecond = 0; private int currentMinute = 0; private int currentHour = 0; private int currentDay = 0; private int currentWeek = 0; /** * A read-write lock around the Statistics[]. It might be possible if this single lock proves to be a bottleneck (really * only when getting history stops the rolling up of new statistics). We use fair locks to minimize the wait time for any * readers and writers. */ private final ReadWriteLock lock = new ReentrantReadWriteLock(false); /** * Method to convert the values/durations captured within the last second and roll them into the history. This method * should be called only by {@link RepositoryStatistics#rollup()}. * * @return the largest window that was modified; never null */ abstract Window rollup(); /** * This method should be called by the {@link #rollup()} method with the statistics computed for the values/durations * since the last invocation. * * @param stats the new statistics for the most recent second; may not be null * @return the largest window that was modified; never null */ protected Window recordStatisticsForLastSecond( Statistics stats ) { java.util.concurrent.locks.Lock lock = this.lock.writeLock(); try { lock.lock(); seconds[currentSecond++] = stats; if (currentSecond == MAX_SECONDS) { // The we've finished filling the seconds, so reset the index // and roll the seconds statistics into a new cumulative statistic for the last minute ... currentSecond = 0; Statistics cumulative = statisticsFor(seconds); minutes[currentMinute++] = cumulative; if (currentMinute == MAX_MINUTES) { // The we've finished filling the minutes, so reset the index // and roll the minutes statistics into a new cumulative statistic for the last hour ... currentMinute = 0; cumulative = statisticsFor(minutes); hours[currentHour++] = cumulative; if (currentHour == MAX_HOURS) { // The we've finished filling the hours, so reset the index // and roll the hour statistics into a new cumulative statistic for the last day ... currentHour = 0; cumulative = statisticsFor(hours); days[currentDay++] = cumulative; if (currentDay == MAX_DAYS) { // The we've finished filling the days, so reset the index // and roll the days statistics into a new cumulative statistic for the last week ... currentDay = 0; cumulative = statisticsFor(days); weeks[currentWeek++] = cumulative; if (currentWeek == MAX_WEEKS) { // The we've finished filling the weeks, so reset the index ... currentWeek = 0; } return Window.PREVIOUS_52_WEEKS; } return Window.PREVIOUS_7_DAYS; } return Window.PREVIOUS_24_HOURS; } return Window.PREVIOUS_60_MINUTES; } return Window.PREVIOUS_60_SECONDS; } finally { lock.unlock(); } } protected Statistics[] getHistory( Window window ) { java.util.concurrent.locks.Lock lock = this.lock.readLock(); try { lock.lock(); switch (window) { case PREVIOUS_60_SECONDS: return copyStatistics(seconds, currentSecond); case PREVIOUS_60_MINUTES: return copyStatistics(minutes, currentMinute); case PREVIOUS_24_HOURS: return copyStatistics(hours, currentHour); case PREVIOUS_7_DAYS: return copyStatistics(days, currentDay); case PREVIOUS_52_WEEKS: return copyStatistics(weeks, currentWeek); } return null; } finally { lock.unlock(); } } private final Statistics[] copyStatistics( Statistics[] stats, int startingIndex ) { final int size = stats.length; Statistics[] results = new Statistics[size]; if (startingIndex == 0) { // Copy the full array in one shot ... System.arraycopy(stats, 0, results, 0, size); } else { // Copy the array in two parts ... final int numAfterStartingIndex = size - startingIndex; final int numBeforeStartingIndex = size - numAfterStartingIndex; if (numAfterStartingIndex > 0) System.arraycopy(stats, startingIndex, results, 0, numAfterStartingIndex); if (numBeforeStartingIndex > 0) System.arraycopy(stats, 0, results, numAfterStartingIndex, numBeforeStartingIndex); } return results; } } /** * The {@link MetricHistory} specialization used for recording the statistics for running values. */ @ThreadSafe protected static final class ValueHistory extends MetricHistory { private final AtomicLong value = new AtomicLong(); private final boolean resetCounterUponRollup; protected ValueHistory( boolean resetCounterUponRollup ) { this.resetCounterUponRollup = resetCounterUponRollup; } void recordIncrement( long increment ) { this.value.addAndGet(increment); } void recordNewValue( long value ) { this.value.set(value); } @Override Window rollup() { long value = resetCounterUponRollup ? this.value.getAndSet(0L) : this.value.get(); return recordStatisticsForLastSecond(statisticsFor(value)); } } /** * The {@link MetricHistory} specialization used for recording the statistics for activities with measured durations. */ @Immutable public static final class DurationActivityImpl implements DurationActivity { protected final long duration; protected final Map payload; protected final TimeUnit timeUnit; protected DurationActivityImpl( long duration, TimeUnit timeUnit, Map payload ) { this.duration = duration; this.payload = payload; this.timeUnit = timeUnit; } @Override public long getDuration( TimeUnit unit ) { return unit.convert(duration, this.timeUnit); } @Override public Map getPayload() { return payload; } @Override public int compareTo( DurationActivity that ) { if (this == that) return 0; // Return the opposite of natural ordering, so smallest durations come first ... return (int)(this.duration - that.getDuration(timeUnit)); } @Override public String toString() { return "Duration: " + getDuration(TimeUnit.SECONDS) + " sec, " + payload; } } @ThreadSafe protected static final class DurationHistory extends MetricHistory { private final Queue duration1 = new ConcurrentLinkedQueue(); private final Queue duration2 = new ConcurrentLinkedQueue(); private final AtomicReference> durations = new AtomicReference>(); private final TimeUnit timeUnit; private final int retentionSize; private final PriorityBlockingQueue largestDurations; protected DurationHistory( TimeUnit timeUnit, int retentionSize ) { assert retentionSize > 0; this.durations.set(duration1); this.timeUnit = timeUnit; this.retentionSize = retentionSize; this.largestDurations = new PriorityBlockingQueue(this.retentionSize + 5); } /** * Record a new duration. This method should be as fast as possible, since it is called within production code. * * @param value the duration * @param timeUnit the time unit; may not be null * @param payload a payload that should be tracked with this duration if it is among the largest */ void recordDuration( long value, TimeUnit timeUnit, Map payload ) { value = this.timeUnit.convert(value, timeUnit); this.durations.get().add(new DurationActivityImpl(value, this.timeUnit, payload)); } @Override Window rollup() { // Swap the queue (which should work, since we should be the only concurrent thread doing this) ... Queue durations = null; if (this.durations.weakCompareAndSet(duration1, duration2)) { durations = duration1; } else { this.durations.weakCompareAndSet(duration2, duration1); durations = duration2; } // Make a copy to minimize the time spent using the durations ... List records = new ArrayList(durations); durations.clear(); // Now add to the largest durations and compute the statistics ... int numRecords = records.size(); long[] values = new long[numRecords]; int i = 0; for (DurationActivity record : records) { values[i++] = record != null ? record.getDuration(TimeUnit.MILLISECONDS) : 0L; this.largestDurations.add(record); while (this.largestDurations.size() > this.retentionSize) { this.largestDurations.poll(); // remove the smallest duration from the front of the queue } } Statistics stats = statisticsFor(values); return recordStatisticsForLastSecond(stats); } DurationActivity[] getLongestRunning() { List records = new ArrayList(this.largestDurations); return records.toArray(new DurationActivity[records.size()]); } } /** * Utility method to construct the statistics for a series of values. * * @param value the single value * @return the core statistics; never null */ public static Statistics statisticsFor( long value ) { return new StatisticsImpl(1, value, value, value, 0.0d); } /** * Utility method to construct the statistics for a series of values. * * @param values the values; the array reference may not be null but the array may be empty * @return the core statistics; never null */ public static Statistics statisticsFor( long[] values ) { int length = values.length; if (length == 0) return EMPTY_STATISTICS; if (length == 1) return statisticsFor(values[0]); long total = 0L; long max = Long.MIN_VALUE; long min = Long.MAX_VALUE; for (long value : values) { total += value; max = Math.max(max, value); min = Math.min(min, value); } double mean = ((double)total) / length; double varianceSquared = 0.0d; double distance = 0.0d; for (long value : values) { distance = mean - value; varianceSquared = varianceSquared + (distance * distance); } return new StatisticsImpl(length, min, max, mean, Math.sqrt(varianceSquared)); } /** * Utility method to construct the composite statistics for a series of sampled statistics. * * @param statistics the sample statistics that are to be combined; the array reference may not be null but the array may be * empty * @return the composite statistics; never null */ public static Statistics statisticsFor( Statistics[] statistics ) { int length = statistics.length; if (length == 0) return EMPTY_STATISTICS; if (length == 1) return statistics[0] != null ? statistics[0] : EMPTY_STATISTICS; int count = 0; long max = Long.MIN_VALUE; long min = Long.MAX_VALUE; double mean = 0.0d; double variance = 0.0d; // Compute the min, max, and mean ... for (Statistics stat : statistics) { if (stat == null) continue; count += stat.getCount(); max = Math.max(max, stat.getMaximum()); min = Math.min(min, stat.getMinimum()); mean = mean + (stat.getMean() * stat.getCount()); } mean = mean / count; // Compute the new variance using the new mean ... double meanDelta = 0.0d; for (Statistics stat : statistics) { if (stat == null) continue; meanDelta = stat.getMean() - mean; variance = variance + (stat.getCount() * (stat.getVariance() + (meanDelta * meanDelta))); } return new StatisticsImpl(count, min, max, mean, variance); } private static final Statistics EMPTY_STATISTICS = new StatisticsImpl(0, 0L, 0L, 0.0d, 0.0d); /** * The statistics for a sample of values. The statistics include the {@link #getMinimum() minimum}, {@link #getMaximum() * maximum}, {@link #getMean() mean (average)}, {@link #getVariance() variance} and {@link #getStandardDeviation() standard * deviation}. *

* The median value is not included in these statistics, since the median value cannot be rolled up given a series of * statistics without having the original values. It is possible to compute the weighted median, but this loses * effectiveness/value the more times it is rolled up. *

*/ @Immutable static final class StatisticsImpl implements Statistics { private final int count; private final long maximum; private final long minimum; private final double mean; private final double variance; // just the square of the standard deviation protected StatisticsImpl( int count, long min, long max, double mean, double variance ) { this.count = count; this.maximum = max; this.minimum = min; this.mean = mean; this.variance = variance; } @Override public int getCount() { return count; } @Override public long getMaximum() { return maximum; } @Override public long getMinimum() { return minimum; } @Override public double getMean() { return mean; } @Override public double getVariance() { return variance; } @Override public double getStandardDeviation() { return variance <= 0.0d ? 0.0d : Math.sqrt(variance); } @Override public String toString() { long count = this.getCount(); String samples = Inflector.getInstance().pluralize("sample", count > 1L ? 2 : 1); return StringUtil.createString("{0} {1}: min={2}; avg={3}; max={4}; dev={5}", count, samples, this.minimum, this.mean, this.maximum, this.getStandardDeviation()); } } /** * A history of a metric for a given window in time. * * @see RepositoryStatistics#getHistory(DurationMetric, Window) * @see RepositoryStatistics#getHistory(ValueMetric, Window) */ @Immutable static final class HistoryImpl implements History { private final Statistics[] stats; private final DateTime endTime; private final Window window; protected HistoryImpl( Statistics[] stats, DateTime endTime, Window window ) { this.stats = stats; this.endTime = endTime; this.window = window; } @Override public Window getWindow() { return window; } @Override public long getTotalDuration( TimeUnit unit ) { if (unit == null) unit = TimeUnit.SECONDS; switch (window) { case PREVIOUS_52_WEEKS: return unit.convert(DURATION_OF_52_WEEKS_WINDOW_IN_SECONDS, TimeUnit.SECONDS); case PREVIOUS_7_DAYS: return unit.convert(DURATION_OF_7_DAYS_WINDOW_IN_SECONDS, TimeUnit.SECONDS); case PREVIOUS_24_HOURS: return unit.convert(DURATION_OF_24_HOURS_WINDOW_IN_SECONDS, TimeUnit.SECONDS); case PREVIOUS_60_MINUTES: return unit.convert(DURATION_OF_60_MINUTES_WINDOW_IN_SECONDS, TimeUnit.SECONDS); case PREVIOUS_60_SECONDS: return unit.convert(DURATION_OF_60_SECONDS_WINDOW_IN_SECONDS, TimeUnit.SECONDS); } throw new SystemFailureException("Should never happen"); } @Override public DateTime getStartTime() { return endTime.minus(getTotalDuration(TimeUnit.SECONDS), TimeUnit.SECONDS); } @Override public DateTime getEndTime() { return endTime; } @Override public Statistics[] getStats() { return stats; } @Override public String toString() { StringBuilder sb = new StringBuilder(); long width = 0L; switch (window) { case PREVIOUS_52_WEEKS: sb.append("Previous 52 weeks"); width = TimeUnit.SECONDS.convert(7, TimeUnit.DAYS); break; case PREVIOUS_7_DAYS: sb.append("Previous 7 days"); width = TimeUnit.SECONDS.convert(1, TimeUnit.DAYS); break; case PREVIOUS_24_HOURS: sb.append("Previous 24 hours"); width = TimeUnit.SECONDS.convert(1, TimeUnit.HOURS); break; case PREVIOUS_60_MINUTES: sb.append("Previous 60 minutes"); width = TimeUnit.SECONDS.convert(1, TimeUnit.MINUTES); break; case PREVIOUS_60_SECONDS: sb.append("Previous 60 seconds"); width = TimeUnit.SECONDS.convert(CAPTURE_INTERVAL_IN_SECONDS, TimeUnit.SECONDS); break; } DateTime startTime = getStartTime(); sb.append(", starting at "); sb.append(startTime); sb.append(" and ending at "); sb.append(getEndTime()); int i = 0; for (Statistics stat : stats) { ++i; if (stat == null) continue; sb.append("\n "); sb.append(stat); sb.append(" at "); sb.append(startTime.plus(i * width, TimeUnit.SECONDS)); } return sb.toString(); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy