org.modeshape.jcr.RepositoryStatistics Maven / Gradle / Ivy
/*
* ModeShape (http://www.modeshape.org)
* See the COPYRIGHT.txt file distributed with this work for information
* regarding copyright ownership. Some portions may be licensed
* to Red Hat, Inc. under one or more contributor license agreements.
* See the AUTHORS.txt file in the distribution for a full listing of
* individual contributors.
*
* ModeShape is free software. Unless otherwise indicated, all code in ModeShape
* is licensed to you under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* ModeShape is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this software; if not, write to the Free
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA, or see the FSF site: http://www.fsf.org.
*/
package org.modeshape.jcr;
import java.util.ArrayList;
import java.util.EnumSet;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.PriorityBlockingQueue;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ScheduledFuture;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import org.modeshape.common.SystemFailureException;
import org.modeshape.common.annotation.Immutable;
import org.modeshape.common.annotation.ThreadSafe;
import org.modeshape.common.text.Inflector;
import org.modeshape.common.util.StringUtil;
import org.modeshape.jcr.api.monitor.DurationActivity;
import org.modeshape.jcr.api.monitor.DurationMetric;
import org.modeshape.jcr.api.monitor.History;
import org.modeshape.jcr.api.monitor.RepositoryMonitor;
import org.modeshape.jcr.api.monitor.Statistics;
import org.modeshape.jcr.api.monitor.ValueMetric;
import org.modeshape.jcr.api.monitor.Window;
import org.modeshape.jcr.api.value.DateTime;
import org.modeshape.jcr.value.DateTimeFactory;
/**
* A component that records statistics for a variety of repository metrics, and makes the statistics available for a variety of
* windows. The value metrics currently include:
*
* - {@link ValueMetric#SESSION_COUNT active sessions} - the number of sessions that are open during the window;
* - {@link ValueMetric#QUERY_COUNT active queries} - the number of queries that were executing during the window;
* - {@link ValueMetric#WORKSPACE_COUNT workspaces} - the number of workspaces in existence during the window;
* - {@link ValueMetric#LISTENER_COUNT listeners} - the number of listeners registered during the window;
* - {@link ValueMetric#SESSION_SCOPED_LOCK_COUNT session-scoped locks} - the number of locks held by sessions during the
* window;
* - {@link ValueMetric#OPEN_SCOPED_LOCK_COUNT non-scoped locks} - the number of non-scoped locks held during the window;
*
* - {@link ValueMetric#SESSION_SAVES save operations} - the number of Session save operations performed the window;
* - {@link ValueMetric#NODE_CHANGES changed nodes} - the number of nodes that were created, updated, or deleted during
* the window;
*
* and the metrics that record durations include:
*
* - {@link DurationMetric#SESSION_LIFETIME session lifetime} - the duration of the sessions closed during the window;
* - {@link DurationMetric#QUERY_EXECUTION_TIME query execution time} - the duration of queries that finished during the
* window;
* - {@link DurationMetric#SEQUENCER_EXECUTION_TIME sequencer execution time} - the duration of sequencing operations
* completed during the window;
*
* This class provides a way to obtain the {@link History history} for a particular metric during a specified window, where the
* window is comprised of the {@link Statistics statistics} (the average value, minimum value, maximum value, variance, standard
* deviation, number of samples, and time interval of the statistics) for:
*
* - each ten 5-second intervals during the last minute (60 seconds); or
* - each minute during the last hour (60 minutes); or
* - each hour during the last day (24 hours); or
* - each day during the last week (7 days); or
* - each week during the last year (52 weeks)
*
*
* To use, simply instantiate and {@link #start(ScheduledExecutorService) start} it by supplying a
* {@link ScheduledExecutorService} instance, which is used to create a periodic task that runs every 5 seconds to roll up
* measured metrics into the various statistic windows. When completed, simply call {@link #stop()} to have the object clean up
* after itself.
*
*/
@ThreadSafe
public class RepositoryStatistics implements RepositoryMonitor {
/**
* The maximum number of longest-running queries to retain.
*/
public static final int MAXIMUM_LONG_RUNNING_QUERY_COUNT = 15;
/**
* The maximum number of longest-running sequencing operations to retain.
*/
public static final int MAXIMUM_LONG_RUNNING_SEQUENCING_COUNT = 15;
/**
* The maximum number of longest-running sessions to retain. Note that all active sessions (those that are not logged out) are
* excluded from this list.
*/
public static final int MAXIMUM_LONG_RUNNING_SESSION_COUNT = 15;
/**
* The frequency at which the metric values are rolled into statistics.
*/
public static final long CAPTURE_INTERVAL_IN_SECONDS = 5L;
private static final long CAPTURE_DELAY_IN_SECONDS = 5L;
protected static final long DURATION_OF_52_WEEKS_WINDOW_IN_SECONDS = TimeUnit.SECONDS.convert(MetricHistory.MAX_WEEKS,
TimeUnit.DAYS) / 7;
protected static final long DURATION_OF_7_DAYS_WINDOW_IN_SECONDS = TimeUnit.SECONDS.convert(MetricHistory.MAX_DAYS,
TimeUnit.DAYS);
protected static final long DURATION_OF_24_HOURS_WINDOW_IN_SECONDS = TimeUnit.SECONDS.convert(MetricHistory.MAX_HOURS,
TimeUnit.HOURS);
protected static final long DURATION_OF_60_MINUTES_WINDOW_IN_SECONDS = TimeUnit.SECONDS.convert(MetricHistory.MAX_MINUTES,
TimeUnit.MINUTES);
protected static final long DURATION_OF_60_SECONDS_WINDOW_IN_SECONDS = TimeUnit.SECONDS.convert(MetricHistory.MAX_SECONDS
* CAPTURE_INTERVAL_IN_SECONDS,
TimeUnit.SECONDS);
private final ConcurrentMap durations = new ConcurrentHashMap();
private final ConcurrentMap values = new ConcurrentHashMap();
private final AtomicReference> rollupFuture = new AtomicReference>();
private final DateTimeFactory timeFactory;
private final AtomicReference secondsStartTime = new AtomicReference();
private final AtomicReference minutesStartTime = new AtomicReference();
private final AtomicReference hoursStartTime = new AtomicReference();
private final AtomicReference daysStartTime = new AtomicReference();
private final AtomicReference weeksStartTime = new AtomicReference();
RepositoryStatistics( ExecutionContext context ) {
this.timeFactory = context.getValueFactories().getDateFactory();
}
/**
* Start recording statistics.
*
* @param service the executor service that should be used to capture the statistics; may not be null
*/
void start( ScheduledExecutorService service ) {
if (rollupFuture.get() != null) {
// already started ...
return;
}
// Pre-populate the metrics (overwriting any existing history object) ...
durations.put(DurationMetric.QUERY_EXECUTION_TIME, new DurationHistory(TimeUnit.MILLISECONDS,
MAXIMUM_LONG_RUNNING_QUERY_COUNT));
durations.put(DurationMetric.SEQUENCER_EXECUTION_TIME, new DurationHistory(TimeUnit.MILLISECONDS,
MAXIMUM_LONG_RUNNING_SEQUENCING_COUNT));
durations.put(DurationMetric.SESSION_LIFETIME, new DurationHistory(TimeUnit.MILLISECONDS,
MAXIMUM_LONG_RUNNING_SESSION_COUNT));
for (ValueMetric metric : EnumSet.allOf(ValueMetric.class)) {
boolean resetUponRollup = !metric.isContinuous();
values.put(metric, new ValueHistory(resetUponRollup));
}
// Initialize the start times in a threadsafe manner ...
DateTime now = timeFactory.create();
this.weeksStartTime.compareAndSet(null, now);
this.daysStartTime.compareAndSet(null, now);
this.hoursStartTime.compareAndSet(null, now);
this.minutesStartTime.compareAndSet(null, now);
this.secondsStartTime.compareAndSet(null, now);
rollup();
// Then schedule the rollup to be done at a fixed rate ...
this.rollupFuture.set(service.scheduleAtFixedRate(new Runnable() {
@SuppressWarnings( "synthetic-access" )
@Override
public void run() {
rollup();
}
}, CAPTURE_DELAY_IN_SECONDS, CAPTURE_INTERVAL_IN_SECONDS, TimeUnit.SECONDS));
}
/**
* Stop recording statistics.
*/
void stop() {
ScheduledFuture> future = this.rollupFuture.getAndSet(null);
if (future != null && !future.isDone() && !future.isCancelled()) {
// Stop running the scheduled job, letting any currently running rollup finish ...
future.cancel(false);
}
}
/**
* Method called once every second by the scheduled job.
*
* @see #start(ScheduledExecutorService)
*/
@SuppressWarnings( "fallthrough" )
private void rollup() {
DateTime now = timeFactory.create();
Window largest = null;
for (DurationHistory history : durations.values()) {
largest = history.rollup();
}
for (ValueHistory history : values.values()) {
largest = history.rollup();
}
// Note that we do expect to fall through, as the 'largest' represents the largest window that was changed,
// while all smaller windows were also changed ...
switch (largest) {
case PREVIOUS_52_WEEKS:
this.weeksStartTime.set(now);
// fall through!!
case PREVIOUS_7_DAYS:
this.daysStartTime.set(now);
// fall through!!
case PREVIOUS_24_HOURS:
this.hoursStartTime.set(now);
// fall through!!
case PREVIOUS_60_MINUTES:
this.minutesStartTime.set(now);
// fall through!!
case PREVIOUS_60_SECONDS:
this.secondsStartTime.set(now);
}
}
private final DateTime mostRecentTimeFor( Window window ) {
switch (window) {
case PREVIOUS_52_WEEKS:
return this.weeksStartTime.get();
case PREVIOUS_7_DAYS:
return this.daysStartTime.get();
case PREVIOUS_24_HOURS:
return this.hoursStartTime.get();
case PREVIOUS_60_MINUTES:
return this.minutesStartTime.get();
case PREVIOUS_60_SECONDS:
return this.secondsStartTime.get();
}
throw new SystemFailureException("Should never happen");
}
@Override
public Set getAvailableDurationMetrics() {
return RepositoryMonitor.ALL_DURATION_METRICS;
}
@Override
public Set getAvailableValueMetrics() {
return RepositoryMonitor.ALL_VALUE_METRICS;
}
@Override
public Set getAvailableWindows() {
return RepositoryMonitor.ALL_WINDOWS;
}
@Override
public History getHistory( ValueMetric metric,
Window windowInTime ) {
assert metric != null;
assert windowInTime != null;
ValueHistory history = values.get(metric);
Statistics[] stats = history != null ? history.getHistory(windowInTime) : Statistics.NO_STATISTICS;
return new HistoryImpl(stats, mostRecentTimeFor(windowInTime), windowInTime);
}
@Override
public History getHistory( DurationMetric metric,
Window windowInTime ) {
assert metric != null;
assert windowInTime != null;
DurationHistory history = durations.get(metric);
Statistics[] stats = history != null ? history.getHistory(windowInTime) : Statistics.NO_STATISTICS;
return new HistoryImpl(stats, mostRecentTimeFor(windowInTime), windowInTime);
}
@Override
public DurationActivity[] getLongestRunning( DurationMetric metric ) {
assert metric != null;
DurationHistory history = durations.get(metric);
return history != null ? history.getLongestRunning() : DurationActivity.NO_DURATION_RECORDS;
}
/**
* Record an incremental change to a value, called by the code that knows when and how the metric changes.
*
* @param metric the metric; may not be null
* @param incrementalValue the positive or negative increment
* @see #increment(ValueMetric)
* @see #decrement(ValueMetric)
* @see #recordDuration(DurationMetric, long, TimeUnit, Map)
*/
void increment( ValueMetric metric,
long incrementalValue ) {
assert metric != null;
ValueHistory history = values.get(metric);
if (history != null) history.recordIncrement(incrementalValue);
}
/**
* Record an increment in a value, called by the code that knows when and how the metric changes.
*
* @param metric the metric; may not be null
* @see #increment(ValueMetric, long)
* @see #decrement(ValueMetric)
* @see #recordDuration(DurationMetric, long, TimeUnit, Map)
*/
void increment( ValueMetric metric ) {
assert metric != null;
ValueHistory history = values.get(metric);
if (history != null) history.recordIncrement(1L);
}
/**
* Record a specific value for a metric, called by the code that knows when and how the metric changes.
*
* @param metric the metric; may not be null
* @param value the value for the metric
* @see #increment(ValueMetric, long)
* @see #decrement(ValueMetric)
* @see #recordDuration(DurationMetric, long, TimeUnit, Map)
*/
void set( ValueMetric metric,
long value ) {
assert metric != null;
ValueHistory history = values.get(metric);
if (history != null) history.recordNewValue(1L);
}
/**
* Record an decrement in a value, called by the code that knows when and how the metric changes.
*
* @param metric the metric; may not be null
* @see #increment(ValueMetric)
* @see #increment(ValueMetric, long)
* @see #recordDuration(DurationMetric, long, TimeUnit, Map)
*/
void decrement( ValueMetric metric ) {
assert metric != null;
ValueHistory history = values.get(metric);
if (history != null) history.recordIncrement(-1L);
}
/**
* Record a new duration for the given metric, called by the code that knows about the duration.
*
* @param metric the metric; may not be null
* @param duration the duration
* @param timeUnit the time unit of the duration
* @param payload the payload; may be null or a lightweight representation of the activity described by the duration
* @see #increment(ValueMetric)
* @see #increment(ValueMetric, long)
* @see #decrement(ValueMetric)
*/
void recordDuration( DurationMetric metric,
long duration,
TimeUnit timeUnit,
Map payload ) {
assert metric != null;
DurationHistory history = durations.get(metric);
if (history != null) history.recordDuration(duration, timeUnit, payload);
}
/**
* Abstract base class for the {@link ValueHistory} and {@link DurationHistory} classes. This class tracks the statistics for
* various periods of time, and to roll up the statistics. The design takes advantage of the fact that we know up front how
* many statistics to keep for each {@link Window window}, and uses a fixed-size array as a ring of ordered values. It also is
* designed to minimize lock contention.
*
* Each instance of this class consumes 5x4bytes for the integer couters, 5x8bytes for the references to the arrays, and
* 143x8byte references to the Statistics objects (for a total of 1204 bytes). Each Statistics instances consumes 36 bytes
* (1x4byte integer, 2x8byte longs, 2x8byte doubles), so 149 instances consumes 5364bytes. Thus the total memory required for
* a single MetricHistory instance is 6568 bytes (6.41kB).
*
*
* So ten metrics require 64.1kB of memory, assuming the repository has been running for 52 weeks. (If not, then not all of
* the Statistics arrays will be filled.)
*
*/
@ThreadSafe
protected static abstract class MetricHistory {
protected static final int MAX_SECONDS = 60 / (int)CAPTURE_INTERVAL_IN_SECONDS;
protected static final int MAX_MINUTES = 60;
protected static final int MAX_HOURS = 24;
protected static final int MAX_DAYS = 7;
protected static final int MAX_WEEKS = 52;
private final Statistics[] seconds = new Statistics[MAX_SECONDS];
private final Statistics[] minutes = new Statistics[MAX_MINUTES];
private final Statistics[] hours = new Statistics[MAX_HOURS];
private final Statistics[] days = new Statistics[MAX_DAYS];
private final Statistics[] weeks = new Statistics[MAX_WEEKS];
private int currentSecond = 0;
private int currentMinute = 0;
private int currentHour = 0;
private int currentDay = 0;
private int currentWeek = 0;
/**
* A read-write lock around the Statistics[]. It might be possible if this single lock proves to be a bottleneck (really
* only when getting history stops the rolling up of new statistics). We use fair locks to minimize the wait time for any
* readers and writers.
*/
private final ReadWriteLock lock = new ReentrantReadWriteLock(false);
/**
* Method to convert the values/durations captured within the last second and roll them into the history. This method
* should be called only by {@link RepositoryStatistics#rollup()}.
*
* @return the largest window that was modified; never null
*/
abstract Window rollup();
/**
* This method should be called by the {@link #rollup()} method with the statistics computed for the values/durations
* since the last invocation.
*
* @param stats the new statistics for the most recent second; may not be null
* @return the largest window that was modified; never null
*/
protected Window recordStatisticsForLastSecond( Statistics stats ) {
java.util.concurrent.locks.Lock lock = this.lock.writeLock();
try {
lock.lock();
seconds[currentSecond++] = stats;
if (currentSecond == MAX_SECONDS) {
// The we've finished filling the seconds, so reset the index
// and roll the seconds statistics into a new cumulative statistic for the last minute ...
currentSecond = 0;
Statistics cumulative = statisticsFor(seconds);
minutes[currentMinute++] = cumulative;
if (currentMinute == MAX_MINUTES) {
// The we've finished filling the minutes, so reset the index
// and roll the minutes statistics into a new cumulative statistic for the last hour ...
currentMinute = 0;
cumulative = statisticsFor(minutes);
hours[currentHour++] = cumulative;
if (currentHour == MAX_HOURS) {
// The we've finished filling the hours, so reset the index
// and roll the hour statistics into a new cumulative statistic for the last day ...
currentHour = 0;
cumulative = statisticsFor(hours);
days[currentDay++] = cumulative;
if (currentDay == MAX_DAYS) {
// The we've finished filling the days, so reset the index
// and roll the days statistics into a new cumulative statistic for the last week ...
currentDay = 0;
cumulative = statisticsFor(days);
weeks[currentWeek++] = cumulative;
if (currentWeek == MAX_WEEKS) {
// The we've finished filling the weeks, so reset the index ...
currentWeek = 0;
}
return Window.PREVIOUS_52_WEEKS;
}
return Window.PREVIOUS_7_DAYS;
}
return Window.PREVIOUS_24_HOURS;
}
return Window.PREVIOUS_60_MINUTES;
}
return Window.PREVIOUS_60_SECONDS;
} finally {
lock.unlock();
}
}
protected Statistics[] getHistory( Window window ) {
java.util.concurrent.locks.Lock lock = this.lock.readLock();
try {
lock.lock();
switch (window) {
case PREVIOUS_60_SECONDS:
return copyStatistics(seconds, currentSecond);
case PREVIOUS_60_MINUTES:
return copyStatistics(minutes, currentMinute);
case PREVIOUS_24_HOURS:
return copyStatistics(hours, currentHour);
case PREVIOUS_7_DAYS:
return copyStatistics(days, currentDay);
case PREVIOUS_52_WEEKS:
return copyStatistics(weeks, currentWeek);
}
return null;
} finally {
lock.unlock();
}
}
private final Statistics[] copyStatistics( Statistics[] stats,
int startingIndex ) {
final int size = stats.length;
Statistics[] results = new Statistics[size];
if (startingIndex == 0) {
// Copy the full array in one shot ...
System.arraycopy(stats, 0, results, 0, size);
} else {
// Copy the array in two parts ...
final int numAfterStartingIndex = size - startingIndex;
final int numBeforeStartingIndex = size - numAfterStartingIndex;
if (numAfterStartingIndex > 0) System.arraycopy(stats, startingIndex, results, 0, numAfterStartingIndex);
if (numBeforeStartingIndex > 0) System.arraycopy(stats, 0, results, numAfterStartingIndex, numBeforeStartingIndex);
}
return results;
}
}
/**
* The {@link MetricHistory} specialization used for recording the statistics for running values.
*/
@ThreadSafe
protected static final class ValueHistory extends MetricHistory {
private final AtomicLong value = new AtomicLong();
private final boolean resetCounterUponRollup;
protected ValueHistory( boolean resetCounterUponRollup ) {
this.resetCounterUponRollup = resetCounterUponRollup;
}
void recordIncrement( long increment ) {
this.value.addAndGet(increment);
}
void recordNewValue( long value ) {
this.value.set(value);
}
@Override
Window rollup() {
long value = resetCounterUponRollup ? this.value.getAndSet(0L) : this.value.get();
return recordStatisticsForLastSecond(statisticsFor(value));
}
}
/**
* The {@link MetricHistory} specialization used for recording the statistics for activities with measured durations.
*/
@Immutable
public static final class DurationActivityImpl implements DurationActivity {
protected final long duration;
protected final Map payload;
protected final TimeUnit timeUnit;
protected DurationActivityImpl( long duration,
TimeUnit timeUnit,
Map payload ) {
this.duration = duration;
this.payload = payload;
this.timeUnit = timeUnit;
}
@Override
public long getDuration( TimeUnit unit ) {
return unit.convert(duration, this.timeUnit);
}
@Override
public Map getPayload() {
return payload;
}
@Override
public int compareTo( DurationActivity that ) {
if (this == that) return 0;
// Return the opposite of natural ordering, so smallest durations come first ...
return (int)(this.duration - that.getDuration(timeUnit));
}
@Override
public String toString() {
return "Duration: " + getDuration(TimeUnit.SECONDS) + " sec, " + payload;
}
}
@ThreadSafe
protected static final class DurationHistory extends MetricHistory {
private final Queue duration1 = new ConcurrentLinkedQueue();
private final Queue duration2 = new ConcurrentLinkedQueue();
private final AtomicReference> durations = new AtomicReference>();
private final TimeUnit timeUnit;
private final int retentionSize;
private final PriorityBlockingQueue largestDurations;
protected DurationHistory( TimeUnit timeUnit,
int retentionSize ) {
assert retentionSize > 0;
this.durations.set(duration1);
this.timeUnit = timeUnit;
this.retentionSize = retentionSize;
this.largestDurations = new PriorityBlockingQueue(this.retentionSize + 5);
}
/**
* Record a new duration. This method should be as fast as possible, since it is called within production code.
*
* @param value the duration
* @param timeUnit the time unit; may not be null
* @param payload a payload that should be tracked with this duration if it is among the largest
*/
void recordDuration( long value,
TimeUnit timeUnit,
Map payload ) {
value = this.timeUnit.convert(value, timeUnit);
this.durations.get().add(new DurationActivityImpl(value, this.timeUnit, payload));
}
@Override
Window rollup() {
// Swap the queue (which should work, since we should be the only concurrent thread doing this) ...
Queue durations = null;
if (this.durations.weakCompareAndSet(duration1, duration2)) {
durations = duration1;
} else {
this.durations.weakCompareAndSet(duration2, duration1);
durations = duration2;
}
// Make a copy to minimize the time spent using the durations ...
List records = new ArrayList(durations);
durations.clear();
// Now add to the largest durations and compute the statistics ...
int numRecords = records.size();
long[] values = new long[numRecords];
int i = 0;
for (DurationActivity record : records) {
values[i++] = record != null ? record.getDuration(TimeUnit.MILLISECONDS) : 0L;
this.largestDurations.add(record);
while (this.largestDurations.size() > this.retentionSize) {
this.largestDurations.poll(); // remove the smallest duration from the front of the queue
}
}
Statistics stats = statisticsFor(values);
return recordStatisticsForLastSecond(stats);
}
DurationActivity[] getLongestRunning() {
List records = new ArrayList(this.largestDurations);
return records.toArray(new DurationActivity[records.size()]);
}
}
/**
* Utility method to construct the statistics for a series of values.
*
* @param value the single value
* @return the core statistics; never null
*/
public static Statistics statisticsFor( long value ) {
return new StatisticsImpl(1, value, value, value, 0.0d);
}
/**
* Utility method to construct the statistics for a series of values.
*
* @param values the values; the array reference may not be null but the array may be empty
* @return the core statistics; never null
*/
public static Statistics statisticsFor( long[] values ) {
int length = values.length;
if (length == 0) return EMPTY_STATISTICS;
if (length == 1) return statisticsFor(values[0]);
long total = 0L;
long max = Long.MIN_VALUE;
long min = Long.MAX_VALUE;
for (long value : values) {
total += value;
max = Math.max(max, value);
min = Math.min(min, value);
}
double mean = ((double)total) / length;
double varianceSquared = 0.0d;
double distance = 0.0d;
for (long value : values) {
distance = mean - value;
varianceSquared = varianceSquared + (distance * distance);
}
return new StatisticsImpl(length, min, max, mean, Math.sqrt(varianceSquared));
}
/**
* Utility method to construct the composite statistics for a series of sampled statistics.
*
* @param statistics the sample statistics that are to be combined; the array reference may not be null but the array may be
* empty
* @return the composite statistics; never null
*/
public static Statistics statisticsFor( Statistics[] statistics ) {
int length = statistics.length;
if (length == 0) return EMPTY_STATISTICS;
if (length == 1) return statistics[0] != null ? statistics[0] : EMPTY_STATISTICS;
int count = 0;
long max = Long.MIN_VALUE;
long min = Long.MAX_VALUE;
double mean = 0.0d;
double variance = 0.0d;
// Compute the min, max, and mean ...
for (Statistics stat : statistics) {
if (stat == null) continue;
count += stat.getCount();
max = Math.max(max, stat.getMaximum());
min = Math.min(min, stat.getMinimum());
mean = mean + (stat.getMean() * stat.getCount());
}
mean = mean / count;
// Compute the new variance using the new mean ...
double meanDelta = 0.0d;
for (Statistics stat : statistics) {
if (stat == null) continue;
meanDelta = stat.getMean() - mean;
variance = variance + (stat.getCount() * (stat.getVariance() + (meanDelta * meanDelta)));
}
return new StatisticsImpl(count, min, max, mean, variance);
}
private static final Statistics EMPTY_STATISTICS = new StatisticsImpl(0, 0L, 0L, 0.0d, 0.0d);
/**
* The statistics for a sample of values. The statistics include the {@link #getMinimum() minimum}, {@link #getMaximum()
* maximum}, {@link #getMean() mean (average)}, {@link #getVariance() variance} and {@link #getStandardDeviation() standard
* deviation}.
*
* The median value is not included in these statistics, since the median value cannot be rolled up given a series of
* statistics without having the original values. It is possible to compute the weighted median, but this loses
* effectiveness/value the more times it is rolled up.
*
*/
@Immutable
static final class StatisticsImpl implements Statistics {
private final int count;
private final long maximum;
private final long minimum;
private final double mean;
private final double variance; // just the square of the standard deviation
protected StatisticsImpl( int count,
long min,
long max,
double mean,
double variance ) {
this.count = count;
this.maximum = max;
this.minimum = min;
this.mean = mean;
this.variance = variance;
}
@Override
public int getCount() {
return count;
}
@Override
public long getMaximum() {
return maximum;
}
@Override
public long getMinimum() {
return minimum;
}
@Override
public double getMean() {
return mean;
}
@Override
public double getVariance() {
return variance;
}
@Override
public double getStandardDeviation() {
return variance <= 0.0d ? 0.0d : Math.sqrt(variance);
}
@Override
public String toString() {
long count = this.getCount();
String samples = Inflector.getInstance().pluralize("sample", count > 1L ? 2 : 1);
return StringUtil.createString("{0} {1}: min={2}; avg={3}; max={4}; dev={5}",
count,
samples,
this.minimum,
this.mean,
this.maximum,
this.getStandardDeviation());
}
}
/**
* A history of a metric for a given window in time.
*
* @see RepositoryStatistics#getHistory(DurationMetric, Window)
* @see RepositoryStatistics#getHistory(ValueMetric, Window)
*/
@Immutable
static final class HistoryImpl implements History {
private final Statistics[] stats;
private final DateTime endTime;
private final Window window;
protected HistoryImpl( Statistics[] stats,
DateTime endTime,
Window window ) {
this.stats = stats;
this.endTime = endTime;
this.window = window;
}
@Override
public Window getWindow() {
return window;
}
@Override
public long getTotalDuration( TimeUnit unit ) {
if (unit == null) unit = TimeUnit.SECONDS;
switch (window) {
case PREVIOUS_52_WEEKS:
return unit.convert(DURATION_OF_52_WEEKS_WINDOW_IN_SECONDS, TimeUnit.SECONDS);
case PREVIOUS_7_DAYS:
return unit.convert(DURATION_OF_7_DAYS_WINDOW_IN_SECONDS, TimeUnit.SECONDS);
case PREVIOUS_24_HOURS:
return unit.convert(DURATION_OF_24_HOURS_WINDOW_IN_SECONDS, TimeUnit.SECONDS);
case PREVIOUS_60_MINUTES:
return unit.convert(DURATION_OF_60_MINUTES_WINDOW_IN_SECONDS, TimeUnit.SECONDS);
case PREVIOUS_60_SECONDS:
return unit.convert(DURATION_OF_60_SECONDS_WINDOW_IN_SECONDS, TimeUnit.SECONDS);
}
throw new SystemFailureException("Should never happen");
}
@Override
public DateTime getStartTime() {
return endTime.minus(getTotalDuration(TimeUnit.SECONDS), TimeUnit.SECONDS);
}
@Override
public DateTime getEndTime() {
return endTime;
}
@Override
public Statistics[] getStats() {
return stats;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
long width = 0L;
switch (window) {
case PREVIOUS_52_WEEKS:
sb.append("Previous 52 weeks");
width = TimeUnit.SECONDS.convert(7, TimeUnit.DAYS);
break;
case PREVIOUS_7_DAYS:
sb.append("Previous 7 days");
width = TimeUnit.SECONDS.convert(1, TimeUnit.DAYS);
break;
case PREVIOUS_24_HOURS:
sb.append("Previous 24 hours");
width = TimeUnit.SECONDS.convert(1, TimeUnit.HOURS);
break;
case PREVIOUS_60_MINUTES:
sb.append("Previous 60 minutes");
width = TimeUnit.SECONDS.convert(1, TimeUnit.MINUTES);
break;
case PREVIOUS_60_SECONDS:
sb.append("Previous 60 seconds");
width = TimeUnit.SECONDS.convert(CAPTURE_INTERVAL_IN_SECONDS, TimeUnit.SECONDS);
break;
}
DateTime startTime = getStartTime();
sb.append(", starting at ");
sb.append(startTime);
sb.append(" and ending at ");
sb.append(getEndTime());
int i = 0;
for (Statistics stat : stats) {
++i;
if (stat == null) continue;
sb.append("\n ");
sb.append(stat);
sb.append(" at ");
sb.append(startTime.plus(i * width, TimeUnit.SECONDS));
}
return sb.toString();
}
}
}