MOEAFramework-3.4.moeaframework.properties Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moeaframework Show documentation
Show all versions of moeaframework Show documentation
An Open Source Java Framework for Multiobjective Optimization
## =======================
## General Configuration
## =======================
## Rank-based statistical inference methods, such as the Mann-Whitney U test
## and the Wilcoxon Signed-Ranks test, approximate the test's discrete
## distribution with a continuous distribution for computing the p-value. It
## has been recommended but not often employed in practice to apply a
## continuity correction. When this flag is set to true, such tests include
## continuity correction.
#org.moeaframework.util.statistics.continuity_correction = false
## By default, non-dominated populations do not allow two solutions with nearly
## identical objective values. This behavior can be modified:
## NO_DUPLICATE_OBJECTIVES - Do not allow solutions with nearly identical
## objectives
## ALLOW_DUPLICATE_OBJECTIVES - Allow solutions with nearly identical
## objectives if they have different decision variables
## ALLOW_DUPLICATES - Allow all duplicate solutions (use caution since the
## size of the population can grow large)
#org.moeaframework.core.duplicate_mode = NO_DUPLICATE_OBJECTIVES
## Non-dominated sorting is used in algorithms like NSGA-II to rank solutions.
## There are two implementations available: the "fast" version and the "naive"
## version. The fast version has a worst case time complexity of O(MN^2) versus
## O(MN^3) of the naive implementation, where M is the number of objectives and
## N is the number of solutions. However, the naive implementations tends to
## have a faster average time and is used by default. Use this setting to enable
## or disable fast non-dominated sorting. If speed is a concern, we recommend
## testing both options to see which performs well.
#org.moeaframework.core.fast_nondominated_sorting = false
## Genetic programming functions are by default protected against returning
## NaN or other invalid numbers. Unless protected against, these invalid
## values propagate throughout the expression and corrupt the results. This
## feature can be disabled by setting this flag to false.
#org.moeaframework.util.tree.protected_functions = false
## The generational distance (GD) and inverted generational distance (IGD)
## indicators are typically computed using some power d. In the literature,
## typically GD uses d=2 and IGD uses d=1.
#org.moeaframework.core.indicator.gd_power = 2.0
#org.moeaframework.core.indicator.igd_power = 1.0
## When calculating the reference point for the hypervolume calculation, the
## nadir point of the reference set is offset by the delta factor (e.g.,
## min + delta*(max-min)). A small but non-zero delta is recommended.
#org.moeaframework.core.indicator.hypervolume_delta = 0.01
## A custom ideal and reference point can be defined for each problem. The name
## must match the value returned by Problem#getName(). Separate values with
## commas. The last value will be repeated as needed to define the reference
## point (e.g., the value 2 is expanded to (2, 2, ..., 2)).
#org.moeaframework.core.indicator.hypervolume_idealpt.DTLZ3 = 0
#org.moeaframework.core.indicator.hypervolume_refpt.DTLZ3 = 2
## The default hypervolume implementation may become computationally prohibitive
## on large approximation sets or at high dimensions. Custom hypervolume
## implementations can be provided. The following variable substitutions are
## provided:
## {0} number of objectives
## {1} approximation set size
## {2} file containing the approximation set
## {3} file containing the reference point
## {4} the reference point, separated by spaces
#org.moeaframework.core.indicator.hypervolume = ./wfg2.exe {2}
#org.moeaframework.core.indicator.hypervolume = ./hoy.exe {0} {1} {2} {3}
## By default, hypervolume calculations are given the minimized approximation
## set, so the reference point is at (1, 1, ..., 1). If the custom hypervolume
## implementation requires maximized sets, such that the reference point is at
## (0, 0, ..., 0), set this option to true.
#org.moeaframework.core.indicator.hypervolume_inverted = true
## In cases where the default or custom hypervolume implementations are
## computationally prohibitive, the hypervolume indicator can be optionally
## disabled. When disabled, the hypervolume will be reported as NaN.
#org.moeaframework.core.indicator.hypervolume_enabled = false
## When restarting an interrupted run, the software will attempt to recover data
## from the prior run. It first cleans the file to remove any invalid data.
## During cleanup, the software moves the old data into an "unclean" file, then
## proceeds to copy all valid data out of the unclean file. If this process is
## interrupted, the unclean file may still exist. By default, the software
## will exit with an exception if an unclean file exists, which would require
## manual intervention. Setting this option to 'overwrite' will automatically
## delete the unclean file. Setting this option to 'restore' will attempt to
## recover the unclean file.
#org.moeaframework.analysis.sensitivity.cleanup = restore
## Enables writing additional debugging information to standard output when
## running an external problem. The debugging info will show the decision
## variables (lines starting with <<) and the output from the process (lines
## starting with >>).
#org.moeaframework.problem.external_problem_debugging = true
## ==============================
## Custom Problem Configuration
## ==============================
## The following enumerates a list of problems by name that are made available
## through the ProblemFactory. For each problem listed, the
## org.moeaframework.problem.NAME.class
## property must be specified with the implementation's class name, and
## org.moeaframework.problem.NAME.referenceSet
## optionally providing the filename for the reference set.
#org.moeaframework.problem.problems =
## ====================
## PISA Configuration
## ====================
## The following defines the available PISA selector names.
#org.moeaframework.algorithm.pisa.algorithms = FEMO, HypE, IBEA, NSGA2, SEMO2, SVH, SPEA2
## The poll rate specifies, in milliseconds, how frequently the state file is
## checked.
#org.moeaframework.algorithm.pisa.poll = 100
## For each algorithm, define its configuration options below. For an
## algorithm called NAME, specify the following:
##
## 1) The executable to run:
## org.moeaframework.algorithm.pisa.NAME.command =
##
## 2) The list of parameters:
## org.moeaframework.algorithm.pisa.NAME.parameters =
## The order typically matters, so ensure the parameters are listed in the
## same order as expected by the executable.
##
## 3) For each parameter PARAM, specify its default value:
## org.moeaframework.algorithm.pisa.NAME.parameter.PARAM =
## It is not necessary to give a default for the seed parameter as it is
## always set by the MOEA Framework.
##
## Note: Prior to version 1.14, the MOEA Framework only accepted a static
## version of the algorithm parameters using the option:
## org.moeaframework.algorithm.pisa.NAME.configuration =
## This is still accepted, but would mean the MOEA Framework is unable to
## change the algorithm parameters.
#org.moeaframework.algorithm.pisa.ECEA.command = ./pisa/ecea_win/ecea.exe
#org.moeaframework.algorithm.pisa.ECEA.parameters = seed, max_iterations
#org.moeaframework.algorithm.pisa.ECEA.parameter.max_iterations = 100
#org.moeaframework.algorithm.pisa.FEMO.command = ./pisa/femo_win/femo.exe
#org.moeaframework.algorithm.pisa.FEMO.parameters = seed
#org.moeaframework.algorithm.pisa.HypE.command = ./pisa/hype_win/hype.exe
#org.moeaframework.algorithm.pisa.HypE.parameters = seed, tournament, mating, bound, nrOfSamples
#org.moeaframework.algorithm.pisa.HypE.parameter.tournament = 5
#org.moeaframework.algorithm.pisa.HypE.parameter.mating = 1
#org.moeaframework.algorithm.pisa.HypE.parameter.bound = 2000
#org.moeaframework.algorithm.pisa.HypE.parameter.nrOfSamples = -1
#org.moeaframework.algorithm.pisa.IBEA.command = ./pisa/ibea_win/ibea.exe
#org.moeaframework.algorithm.pisa.IBEA.parameters = seed, tournament, indicator, kappa, rho
#org.moeaframework.algorithm.pisa.IBEA.parameter.tournament = 2
#org.moeaframework.algorithm.pisa.IBEA.parameter.indicator = 0
#org.moeaframework.algorithm.pisa.IBEA.parameter.kappa = 0.05
#org.moeaframework.algorithm.pisa.IBEA.parameter.rho = 1.1
#org.moeaframework.algorithm.pisa.NSGA2.command = ./pisa/nsga2_win/nsga2.exe
#org.moeaframework.algorithm.pisa.NSGA2.parameters = seed, tournament
#org.moeaframework.algorithm.pisa.NSGA2.parameter.tournament = 2
#org.moeaframework.algorithm.pisa.SEMO2.command = ./pisa/semo2_win/semo2.exe
#org.moeaframework.algorithm.pisa.SEMO2.parameters = seed
#org.moeaframework.algorithm.pisa.SVH.command = ./pisa/shv_win/shv.exe
#org.moeaframework.algorithm.pisa.SVH.parameters = seed, bound, junks, junksize
#org.moeaframework.algorithm.pisa.SVH.parameter.bound = 2000
#org.moeaframework.algorithm.pisa.SVH.parameter.junks = 100
#org.moeaframework.algorithm.pisa.SVH.parameter.junksize = 100
#org.moeaframework.algorithm.pisa.SIBEA.command = java -jar ./pisa/sibea_win/sibea.jar
#org.moeaframework.algorithm.pisa.SIBEA.parameters = seed, bound
#org.moeaframework.algorithm.pisa.SIBEA.parameter.bound = 10
#org.moeaframework.algorithm.pisa.SPAM.command = ./pisa/SPAM_win/spam.exe
#org.moeaframework.algorithm.pisa.SPAM.parameters = seed, bound, prefreltype
#org.moeaframework.algorithm.pisa.SPAM.parameter.bound = 1.2
#org.moeaframework.algorithm.pisa.SPAM.parameter.prefreltype = 6
#org.moeaframework.algorithm.pisa.SPEA2.command = ./pisa/spea2_win/spea2.exe
#org.moeaframework.algorithm.pisa.SPEA2.parameters = seed, tournament
#org.moeaframework.algorithm.pisa.SPEA2.parameter.tournament = 2
## ===============================
## Diagnostic Tool Configuration
## ===============================
## Comma-separated list of algorithms available in the diagnostic tool. PISA
## algorithms are automatically included.
#org.moeaframework.analysis.diagnostics.algorithms = NSGAII, NSGAIII, GDE3, \
# eMOEA, eNSGAII, MOEAD, Random
## Comma-separated list of problems available in the diagnostic tool.
#org.moeaframework.analysis.diagnostics.problems = \
# DTLZ1_2, DTLZ2_2, DTLZ3_2, DTLZ4_2, DTLZ7_2, \
# ROT_DTLZ1_2, ROT_DTLZ2_2, ROT_DTLZ3_2, ROT_DTLZ4_2, ROT_DTLZ7_2, \
# UF1, UF2, UF3, UF4, UF5, UF6, UF7, UF8, UF9, UF10, UF11, UF12, UF13, \
# CF1, CF2, CF3, CF4, CF5, CF6, CF7, CF8, CF9, CF10, \
# LZ1, LZ2, LZ3, LZ4, LZ5, LZ6, LZ7, LZ8, LZ9, \
# WFG1_2, WFG2_2, WFG3_2, WFG4_2, WFG5_2, WFG6_2, WFG7_2, WFG8_2, WFG9_2, \
# ZDT1, ZDT2, ZDT3, ZDT4, ZDT5, ZDT6, \
# Belegundu, Binh, Binh2, Binh3, Binh4, Fonseca, Fonseca2, Jimenez, Kita, \
# Kursawe, Laumanns, Lis, Murata, Obayashi, OKA1, OKA2, Osyczka, Osyczka2, \
# Poloni, Quagliarella, Rendon, Rendon2, Schaffer, Schaffer2, Srinivas, \
# Tamaki, Tanaka, Viennet, Viennet2, Viennet3, Viennet4
© 2015 - 2025 Weber Informatics LLC | Privacy Policy