MOEAFramework-3.4.website.xslt.features.xml Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moeaframework Show documentation
Show all versions of moeaframework Show documentation
An Open Source Java Framework for Multiobjective Optimization
<?xml version="1.0"?> <!DOCTYPE some_name [ <!ENTITY nbsp " "> <!ENTITY copy "©"> <!ENTITY epsilon "ε"> ]> <page> <title>Key Features of the MOEA Framework</title> <description>Walk through introductory examples using the MOEA Framework</description> <header> <script type="text/javascript" src="scripts/shCore.js"></script> <script type="text/javascript" src="scripts/shBrushJava.js"></script> <script type="text/javascript" src="scripts/shBrushCpp.js"></script> <script type="text/javascript" src="scripts/shBrushPlain.js"></script> <link type="text/css" rel="stylesheet" href="styles/shCoreEclipse.css" /> <script type="text/javascript">SyntaxHighlighter.all();</script> <style> td, th { padding: .3em 1em; } </style> </header> <content> <h2>Features</h2> <p> The MOEA Framework aims to provide a comprehensive collection of algorithms and tools for single and multiobjective optimization. This page lists the key features of the MOEA Framework. For more information, see our online documentation. </p> <ul> <li><a href="#algorithms">Algorithms</a></li> <li><a href="#controllers">Meta-Algorithms</a></li> <li><a href="#problems">Problem Sets</a></li> <li><a href="#representations">Representations</a></li> <li><a href="#other">Additional Features</a></li> </ul> <div class="section"> <a name="algorithms" /> <h3>Algorithms</h3> <p>The MOEA Framework has the largest collection of EAs and MOEAs of any library. In addition to these pre-defined algorithms, new algorithms can be easily constructed using existing components.</p> <table> <tr> <th>Name</th> <th>Description</th> </tr> <tr> <td style="font-weight: bold">AbYSS</td> <td>Multiobjective Scatter Search<sup>1</sup></td> </tr> <tr> <td style="font-weight: bold">AMOSA</td> <td>Archived Multi-objective Simulated Annealing</td> </tr> <tr> <td style="font-weight: bold">Borg MOEA</td> <td>Adaptive Multioperator Search with ε-Dominance and ε-Progress Triggered Restarts<sup>3</sup></td> </tr> <tr> <td style="font-weight: bold">CDG</td> <td>Constrained Decomposition Approach with Grids<sup>1</sup></td> </tr> <tr> <td style="font-weight: bold">CellDE</td> <td>Cellular Genetic Algorithm with Differential Evolution<sup>1</sup></td> </tr> <tr> <td style="font-weight: bold">CMA-ES</td> <td>Covariance Matrix Adaption Evolution Strategy</td> </tr> <tr> <td style="font-weight: bold">DBEA</td> <td>Improved Decomposition-Based Evolutionary Algorithm</td> </tr> <tr> <td style="font-weight: bold">DE</td> <td>Differential Evolution (Single Objective)</td> </tr> <!-- <tr> <td style="font-weight: bold">DENSEA</td> <td>Duplicate Elimination Nondominated Sorting Evolutionary Algorithm<sup>1</sup></td> </tr> --> <tr> <td style="font-weight: bold">ECEA</td> <td>Epsilon-Constraint Evolutionary Algorithm<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">ES</td> <td>Evolution Strategies (Single Objective)</td> </tr> <tr> <td style="font-weight: bold">ESPEA</td> <td>Electrostatic Potential Energy Evolutionary Algorithm<sup>1</sup></td> </tr> <tr> <td style="font-weight: bold;">ε-MOEA</td> <td>ε-Dominance-based Evolutionary Algorithm</td> </tr> <tr> <td style="font-weight: bold">ε-NSGA-II</td> <td>NSGA-II with ε-Dominance, Randomized Restarts, and Adaptive Population Sizing</td> </tr> <!-- <tr> <td style="font-weight: bold">FastPGA</td> <td>Fast Pareto Genetic Algorithm<sup>1</sup></td> </tr> --> <tr> <td style="font-weight: bold">FEMO</td> <td>Fair Evolutionary Multiobjective Optimizer<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">GA</td> <td>Genetic Algorithm with Elitism (Single Objective)</td> </tr> <tr> <td style="font-weight: bold">GDE3</td> <td>Generalized Differential Evolution</td> </tr> <tr> <td style="font-weight: bold">HypE</td> <td>Hypervolume Estimation Algorithm for Multiobjective Optimization<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">IBEA</td> <td>Indicator-Based Evolutionary Algorithm</td> </tr> <tr> <td style="font-weight: bold">MOCell</td> <td>Multiobjective Cellular Genetic Algorithm<sup>1</sup></td> </tr> <tr> <td style="font-weight: bold">MOCHC</td> <td>Multiobjective CHC Algorithm<sup>1</sup></td> </tr> <tr> <td style="font-weight: bold">MOEA/D</td> <td>Multiobjective Evolutionary Algorithm with Decomposition</td> </tr> <tr> <td style="font-weight: bold">MSOPS</td> <td>Multiple Single-Objective Pareto Sampling</td> </tr> <tr> <td style="font-weight: bold">NSGA-II</td> <td>Non-dominated Sorting Genetic Algorithm II</td> </tr> <tr> <td style="font-weight: bold">NSGA-III</td> <td>Reference-Point Based Non-dominated Sorting Genetic Algorithm</td> </tr> <tr> <td style="font-weight: bold">OMOPSO</td> <td>Multiobjective Particle Swarm Optimization</td> </tr> <tr> <td style="font-weight: bold">PAES</td> <td>Pareto Archived Evolution Strategy</td> </tr> <tr> <td style="font-weight: bold">PESA2</td> <td>Pareto Envelope-based Selection Algorithm</td> </tr> <tr> <td style="font-weight: bold">Random</td> <td>Random Search</td> </tr> <tr> <td style="font-weight: bold">RSO</td> <td>Repeated Single Objective Algorithm</td> </tr> <tr> <td style="font-weight: bold">RVEA</td> <td>Reference Vector Guided Evolutionary Algorithm</td> </tr> <tr> <td style="font-weight: bold">SEMO2</td> <td>Simple Evolutionary Multiobjective Optmimizer<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">SHV</td> <td>Sampling-Based Hypervolume-Oriented Algorithm<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">SIBEA</td> <td>Simple Indicator Based Evolutionary Algorithm<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">SMPSO</td> <td>Speed-Constrained Multiobjective Particle Swarm Optimization</td> </tr> <tr> <td style="font-weight: bold">SMS-EMOA</td> <td>S-Metric Selection MOEA</td> </tr> <tr> <td style="font-weight: bold">SPAM</td> <td>Set Preference Algorithm for Multiobjective Optimization<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">SPEA2</td> <td>Strength-based Evolutionary Algorithm</td> </tr> <tr> <td style="font-weight: bold">VEGA</td> <td>Vector Evaluated Genetic Algorithm</td> </tr> </table> <p> <sup>1</sup> - Algorithms provided by the <a href="http://jmetal.sourceforge.net/">JMetal</a> library (requires jmetal-plugin).<br /> <sup>2</sup> - Algorithms provided by the <a href="http://www.tik.ee.ethz.ch/sop/pisa/">PISA</a> library.<br /> <sup>3</sup> - Available as a JAR plugin from <a href="http://borgmoea.org">borgmoea.org</a>. </p> </div> <div class="section"> <a name="controllers" /> <h3>Meta-Algorithms</h3> <p>Meta-algorithms are wrappers around existing algorithms to provide additional functionality.</p> <table> <tr> <th>Name</th> <th>Description</th> </tr> <tr> <td style="font-weight: bold;">Adaptive Time Continuation</td> <td>Periodically restart the algorithm, possibly adapting parameters</td> </tr> <tr> <td style="font-weight: bold">Epsilon Progress Continuation</td> <td>Monitor search progress, triggering a restart if search stagnates</td> </tr> <tr> <td style="font-weight: bold">Checkpoints</td> <td>Periodically save the state of the algorithm to resume interrupted runs</td> </tr> </table> </div> <div class="section"> <a name="problems" /> <h3>Problem Sets</h3> <p>Also included are all major test problems from the literature. Additionally, new problems written in Java or other languages can be easily incorporated.</p> <table> <tr> <th>Name</th> <th>Description</th> </tr> <tr> <td style="font-weight: bold;">ZDT</td> <td>6 real-valued problems from Zitzler et al. (2000)</td> </tr> <tr> <td style="font-weight: bold">DTLZ</td> <td>5 unconstrained, scalable real-valued problems from Deb et al. (2001)</td> </tr> <tr> <td style="font-weight: bold">LZ</td> <td>9 real-valued problems from Hui Li and Qingfu Zhang (2009)</td> </tr> <tr> <td style="font-weight: bold">CEC2009</td> <td>13 unconstrained and 10 constrained real-valued problems from the CEC2009 competition</td> </tr> <tr> <td style="font-weight: bold">WFG</td> <td>9 scalable, real-valued problems by Huband et al. (2005)</td> </tr> <tr> <td style="font-weight: bold">BBOB-2016</td> <td>55 bi-objective problems from the BBOB workshop hosted at GECCO 2016</td> </tr> <tr> <td style="font-weight: bold">Miscellaneous</td> <td>28 real-valued, binary, permutation, and program-based test problems from the literature (e.g., knapsack, NK-landscapes)</td> </tr> </table> </div> <div class="section"> <a name="representations" /> <h3>Representations</h3> <table> <tr> <th>Representation</th> <th>Operators</th> </tr> <tr> <td style="font-weight: bold;">Real-Valued</td> <td>Simulated Binary Crossover (SBX)<br /> Polynomial Mutation (PM)<br /> Parent-Centric Crossover (PCX)<br /> Simplex Crossover (SPX)<br /> Unimodal Normal Distribution Crossover (UNDX)<br /> Uniform Mutation (UM)<br /> Differential Evolution (DE)<br /> Adaptive Metropolis (AM)</td> </tr> <tr> <td style="font-weight: bold">Binary</td> <td>Bit Flip Mutation<br /> Half-Uniform Crossover (HUX)</td> </tr> <tr> <td style="font-weight: bold">Permutation</td> <td>Insertion<br /> Swap<br /> Partially Mapped Crossover (PMX)</td> </tr> <tr> <td style="font-weight: bold">Subset</td> <td>Replace<br /> Subset Crossover (SSX)</td> </tr> <tr> <td style="font-weight: bold">Grammars</td> <td>Single-point Crossover<br /> Uniform Mutation</td> </tr> <tr> <td style="font-weight: bold">Programs</td> <td>Point Mutation<br /> Subtree Crossover</td> </tr> <tr> <td style="font-weight: bold">Generic</td> <td>One Point Crossover<br /> Two Point Crossover<br /> Uniform Crossover<br /> Adaptive Multimethod Variation</td> </tr> </table> </div> <div class="section"> <a name="other" /> <h3>Additional Features</h3> <p></p> <table> <tr> <th>Feature</th> <th>Description</th> </tr> <tr> <td style="font-weight: bold;">Performance Indicators</td> <td>Hypervolume<br /> Generational Distance (GD)<br /> Inverted Generational Distance (IGD)<br /> Additive ε-Indicator<br /> Contribution<br /> Maximum Pareto Front Error<br /> Spacing<br /> R1 Indicator<br /> R2 Indicator<br /> R3 Indicator</td> </tr> <tr> <td style="font-weight: bold">Executor, Analyzer, and Instrumenter</td> <td>Three simple Java classes for accessing 90% of the functionality of the MOEA Framework: <ul> <li>Executor - Construct and execute MOEAs to solve optimization problems</li> <li>Analyzer - Statistically compare results</li> <li>Instrumenter - Record runtime dynamics</li> </ul> </td> </tr> <tr> <td style="font-weight: bold">Diagnostic Tool</td> <td>GUI for quickly comparing the performance of algorithms on standard test problems</td> </tr> <tr> <td style="font-weight: bold">Sensitivity Analysis</td> <td>Sensitivity analysis tools for identifying key parameters for an algorithm (accessible through a command-line interface)</td> </tr> <tr> <td style="font-weight: bold">Parallelization</td> <td>Automatic parallelization of algorithms across multiple cores, or distribute processing across a network using <a href="http://www.jppf.org/">JPPF</a>, <a href="http://www.gridgain.com/">GridGain</a>, or any other supported grid computing library</td> </tr> <tr> <td style="font-weight: bold">Extensible</td> <td>Build new algorithms, operators, representations, or problems and integrate them into the MOEA Framework using our Service Provider Interface (SPI)</td> </tr> <tr> <td style="font-weight: bold">Best Practices</td> <td>Extensively documented and unit tested source code to ensure quality</td> </tr> </table> </div> </content> </page>
© 2015 - 2025 Weber Informatics LLC | Privacy Policy