MOEAFramework-3.7.website.xslt.features.xml Maven / Gradle / Ivy
<?xml version="1.0"?> <!DOCTYPE some_name [ <!ENTITY nbsp " "> <!ENTITY copy "©"> <!ENTITY epsilon "ε"> ]> <page> <title>Key Features of the MOEA Framework</title> <description>Walk through introductory examples using the MOEA Framework</description> <header> <script type="text/javascript" src="scripts/shCore.js"></script> <script type="text/javascript" src="scripts/shBrushJava.js"></script> <script type="text/javascript" src="scripts/shBrushCpp.js"></script> <script type="text/javascript" src="scripts/shBrushPlain.js"></script> <link type="text/css" rel="stylesheet" href="styles/shCoreEclipse.css" /> <script type="text/javascript">SyntaxHighlighter.all();</script> <style> td, th { padding: .3em 1em; } </style> </header> <content> <h2>Features</h2> <p> The MOEA Framework aims to provide a comprehensive collection of algorithms and tools for single and multiobjective optimization. This page lists the key features of the MOEA Framework. For more information, see our online documentation. </p> <ul> <li><a href="#algorithms">Algorithms</a></li> <li><a href="#controllers">Meta-Algorithms</a></li> <li><a href="#problems">Problem Sets</a></li> <li><a href="#representations">Representations</a></li> <li><a href="#other">Additional Features</a></li> </ul> <div class="section"> <a name="algorithms" /> <h3>Algorithms</h3> <p>The MOEA Framework has the largest collection of EAs and MOEAs of any library. In addition to these pre-defined algorithms, new algorithms can be easily constructed using existing components.</p> <table> <tr> <th>Name</th> <th>Description</th> </tr> <tr> <td style="font-weight: bold">AbYSS</td> <td>Multiobjective Scatter Search<sup>1</sup></td> </tr> <tr> <td style="font-weight: bold">AMOSA</td> <td>Archived Multi-objective Simulated Annealing</td> </tr> <tr> <td style="font-weight: bold">Borg MOEA</td> <td>Adaptive Multioperator Search with ε-Dominance and ε-Progress Triggered Restarts<sup>3</sup></td> </tr> <tr> <td style="font-weight: bold">CDG</td> <td>Constrained Decomposition Approach with Grids<sup>1</sup></td> </tr> <tr> <td style="font-weight: bold">CellDE</td> <td>Cellular Genetic Algorithm with Differential Evolution<sup>1</sup></td> </tr> <tr> <td style="font-weight: bold">CMA-ES</td> <td>Covariance Matrix Adaption Evolution Strategy</td> </tr> <tr> <td style="font-weight: bold">DBEA</td> <td>Improved Decomposition-Based Evolutionary Algorithm</td> </tr> <tr> <td style="font-weight: bold">DE</td> <td>Differential Evolution (Single Objective)</td> </tr> <!-- <tr> <td style="font-weight: bold">DENSEA</td> <td>Duplicate Elimination Nondominated Sorting Evolutionary Algorithm<sup>1</sup></td> </tr> --> <tr> <td style="font-weight: bold">ECEA</td> <td>Epsilon-Constraint Evolutionary Algorithm<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">ES</td> <td>Evolution Strategies (Single Objective)</td> </tr> <tr> <td style="font-weight: bold">ESPEA</td> <td>Electrostatic Potential Energy Evolutionary Algorithm<sup>1</sup></td> </tr> <tr> <td style="font-weight: bold;">ε-MOEA</td> <td>ε-Dominance-based Evolutionary Algorithm</td> </tr> <tr> <td style="font-weight: bold">ε-NSGA-II</td> <td>NSGA-II with ε-Dominance, Randomized Restarts, and Adaptive Population Sizing</td> </tr> <!-- <tr> <td style="font-weight: bold">FastPGA</td> <td>Fast Pareto Genetic Algorithm<sup>1</sup></td> </tr> --> <tr> <td style="font-weight: bold">FEMO</td> <td>Fair Evolutionary Multiobjective Optimizer<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">GA</td> <td>Genetic Algorithm with Elitism (Single Objective)</td> </tr> <tr> <td style="font-weight: bold">GDE3</td> <td>Generalized Differential Evolution</td> </tr> <tr> <td style="font-weight: bold">HypE</td> <td>Hypervolume Estimation Algorithm for Multiobjective Optimization<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">IBEA</td> <td>Indicator-Based Evolutionary Algorithm</td> </tr> <tr> <td style="font-weight: bold">MOCell</td> <td>Multiobjective Cellular Genetic Algorithm<sup>1</sup></td> </tr> <tr> <td style="font-weight: bold">MOCHC</td> <td>Multiobjective CHC Algorithm<sup>1</sup></td> </tr> <tr> <td style="font-weight: bold">MOEA/D</td> <td>Multiobjective Evolutionary Algorithm with Decomposition</td> </tr> <tr> <td style="font-weight: bold">MSOPS</td> <td>Multiple Single-Objective Pareto Sampling</td> </tr> <tr> <td style="font-weight: bold">NSGA-II</td> <td>Non-dominated Sorting Genetic Algorithm II</td> </tr> <tr> <td style="font-weight: bold">NSGA-III</td> <td>Reference-Point Based Non-dominated Sorting Genetic Algorithm</td> </tr> <tr> <td style="font-weight: bold">OMOPSO</td> <td>Multiobjective Particle Swarm Optimization</td> </tr> <tr> <td style="font-weight: bold">PAES</td> <td>Pareto Archived Evolution Strategy</td> </tr> <tr> <td style="font-weight: bold">PESA2</td> <td>Pareto Envelope-based Selection Algorithm</td> </tr> <tr> <td style="font-weight: bold">Random</td> <td>Random Search</td> </tr> <tr> <td style="font-weight: bold">RSO</td> <td>Repeated Single Objective Algorithm</td> </tr> <tr> <td style="font-weight: bold">RVEA</td> <td>Reference Vector Guided Evolutionary Algorithm</td> </tr> <tr> <td style="font-weight: bold">SEMO2</td> <td>Simple Evolutionary Multiobjective Optmimizer<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">SHV</td> <td>Sampling-Based Hypervolume-Oriented Algorithm<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">SIBEA</td> <td>Simple Indicator Based Evolutionary Algorithm<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">SMPSO</td> <td>Speed-Constrained Multiobjective Particle Swarm Optimization</td> </tr> <tr> <td style="font-weight: bold">SMS-EMOA</td> <td>S-Metric Selection MOEA</td> </tr> <tr> <td style="font-weight: bold">SPAM</td> <td>Set Preference Algorithm for Multiobjective Optimization<sup>2</sup></td> </tr> <tr> <td style="font-weight: bold">SPEA2</td> <td>Strength-based Evolutionary Algorithm</td> </tr> <tr> <td style="font-weight: bold">VEGA</td> <td>Vector Evaluated Genetic Algorithm</td> </tr> </table> <p> <sup>1</sup> - Algorithms provided by the <a href="http://jmetal.sourceforge.net/">JMetal</a> library (requires jmetal-plugin).<br /> <sup>2</sup> - Algorithms provided by the <a href="http://www.tik.ee.ethz.ch/sop/pisa/">PISA</a> library (requires pisa-plugin).<br /> <sup>3</sup> - Available as a JAR plugin from <a href="http://borgmoea.org">borgmoea.org</a>. </p> </div> <div class="section"> <a name="controllers" /> <h3>Meta-Algorithms</h3> <p>Meta-algorithms are wrappers around existing algorithms to provide additional functionality.</p> <table> <tr> <th>Name</th> <th>Description</th> </tr> <tr> <td style="font-weight: bold;">Adaptive Time Continuation</td> <td>Periodically restart the algorithm, possibly adapting parameters</td> </tr> <tr> <td style="font-weight: bold">Epsilon Progress Continuation</td> <td>Monitor search progress, triggering a restart if search stagnates</td> </tr> <tr> <td style="font-weight: bold">Checkpoints</td> <td>Periodically save the state of the algorithm to resume interrupted runs</td> </tr> </table> </div> <div class="section"> <a name="problems" /> <h3>Problem Sets</h3> <p>Also included are all major test problems from the literature. Additionally, new problems written in Java or other languages can be easily incorporated.</p> <table> <tr> <th>Name</th> <th>Description</th> </tr> <tr> <td style="font-weight: bold;">ZDT</td> <td>6 real-valued problems from Zitzler et al. (2000)</td> </tr> <tr> <td style="font-weight: bold">DTLZ</td> <td>5 unconstrained, scalable real-valued problems from Deb et al. (2001)</td> </tr> <tr> <td style="font-weight: bold">LZ</td> <td>9 real-valued problems from Hui Li and Qingfu Zhang (2009)</td> </tr> <tr> <td style="font-weight: bold">CEC2009</td> <td>13 unconstrained and 10 constrained real-valued problems from the CEC2009 competition</td> </tr> <tr> <td style="font-weight: bold">WFG</td> <td>9 scalable, real-valued problems by Huband et al. (2005)</td> </tr> <tr> <td style="font-weight: bold">BBOB-2016</td> <td>55 bi-objective problems from the BBOB workshop hosted at GECCO 2016</td> </tr> <tr> <td style="font-weight: bold">Miscellaneous</td> <td>28 real-valued, binary, permutation, and program-based test problems from the literature (e.g., knapsack, NK-landscapes)</td> </tr> </table> </div> <div class="section"> <a name="representations" /> <h3>Representations</h3> <table> <tr> <th>Representation</th> <th>Operators</th> </tr> <tr> <td style="font-weight: bold;">Real-Valued</td> <td>Simulated Binary Crossover (SBX)<br /> Polynomial Mutation (PM)<br /> Parent-Centric Crossover (PCX)<br /> Simplex Crossover (SPX)<br /> Unimodal Normal Distribution Crossover (UNDX)<br /> Uniform Mutation (UM)<br /> Differential Evolution (DE)<br /> Adaptive Metropolis (AM)</td> </tr> <tr> <td style="font-weight: bold">Binary</td> <td>Bit Flip Mutation<br /> Half-Uniform Crossover (HUX)</td> </tr> <tr> <td style="font-weight: bold">Permutation</td> <td>Insertion<br /> Swap<br /> Partially Mapped Crossover (PMX)</td> </tr> <tr> <td style="font-weight: bold">Subset</td> <td>Replace<br /> Subset Crossover (SSX)</td> </tr> <tr> <td style="font-weight: bold">Grammars</td> <td>Single-point Crossover<br /> Uniform Mutation</td> </tr> <tr> <td style="font-weight: bold">Programs</td> <td>Point Mutation<br /> Subtree Crossover</td> </tr> <tr> <td style="font-weight: bold">Generic</td> <td>One Point Crossover<br /> Two Point Crossover<br /> Uniform Crossover<br /> Adaptive Multimethod Variation</td> </tr> </table> </div> <div class="section"> <a name="other" /> <h3>Additional Features</h3> <p></p> <table> <tr> <th>Feature</th> <th>Description</th> </tr> <tr> <td style="font-weight: bold;">Performance Indicators</td> <td>Hypervolume<br /> Generational Distance (GD)<br /> Inverted Generational Distance (IGD)<br /> Additive ε-Indicator<br /> Contribution<br /> Maximum Pareto Front Error<br /> Spacing<br /> R1 Indicator<br /> R2 Indicator<br /> R3 Indicator</td> </tr> <tr> <td style="font-weight: bold">Executor, Analyzer, and Instrumenter</td> <td>Three simple Java classes for accessing 90% of the functionality of the MOEA Framework: <ul> <li>Executor - Construct and execute MOEAs to solve optimization problems</li> <li>Analyzer - Statistically compare results</li> <li>Instrumenter - Record runtime dynamics</li> </ul> </td> </tr> <tr> <td style="font-weight: bold">Diagnostic Tool</td> <td>GUI for quickly comparing the performance of algorithms on standard test problems</td> </tr> <tr> <td style="font-weight: bold">Sensitivity Analysis</td> <td>Sensitivity analysis tools for identifying key parameters for an algorithm (accessible through a command-line interface)</td> </tr> <tr> <td style="font-weight: bold">Parallelization</td> <td>Automatic parallelization of algorithms across multiple cores, or distribute processing across a network using <a href="http://www.jppf.org/">JPPF</a>, <a href="http://www.gridgain.com/">GridGain</a>, or any other supported grid computing library</td> </tr> <tr> <td style="font-weight: bold">Extensible</td> <td>Build new algorithms, operators, representations, or problems and integrate them into the MOEA Framework using our Service Provider Interface (SPI)</td> </tr> <tr> <td style="font-weight: bold">Best Practices</td> <td>Extensively documented and unit tested source code to ensure quality</td> </tr> </table> </div> </content> </page>
© 2015 - 2025 Weber Informatics LLC | Privacy Policy