monifu.reactive.observers.buffers.BatchedBufferedSubscriber.scala Maven / Gradle / Ivy
/*
* Copyright (c) 2014-2016 by its authors. Some rights reserved.
* See the project homepage at: https://monix.io
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package monifu.reactive.observers.buffers
import java.util.concurrent.ConcurrentLinkedQueue
import monifu.concurrent.atomic.Atomic
import monifu.reactive.{Subscriber, Ack}
import monifu.reactive.Ack.{Cancel, Continue}
import monifu.reactive.observers.BufferedSubscriber
import monifu.reactive.observers.buffers.BatchedBufferedSubscriber.State
import scala.annotation.tailrec
import scala.collection.mutable
import scala.concurrent.{Future, Promise}
/** A [[BufferedSubscriber]] implementation for the
* [[monifu.reactive.OverflowStrategy.BackPressure BackPressured]]
* buffer overflowStrategy that sends events in bundles.
*/
private[monifu] final class BatchedBufferedSubscriber[-T] private
(underlying: Subscriber[List[T]], bufferSize: Int)
extends BufferedSubscriber[T] { self =>
require(bufferSize > 0, "bufferSize must be a strictly positive number")
implicit val scheduler = underlying.scheduler
// State for managing contention between multiple producers and one consumer
private[this] val stateRef = Atomic(State())
// Concurrent queue, producers can push into it without extra synchronization
// and there's a happens before relationship between `queue.offer` and
// incrementing `stateRef.itemsToPush`, which we are using on the consumer
// side in order to know how many items to process and when to stop
private[this] val queue = new ConcurrentLinkedQueue[T]()
// Used on the consumer side to split big synchronous workloads in batches
private[this] val batchSizeModulus = scheduler.env.batchSize - 1
def onNext(elem: T): Future[Ack] = {
val state = stateRef.get
// if upstream has completed or downstream canceled, we should cancel
if (state.upstreamShouldCancel) Cancel else {
queue.offer(elem)
pushToConsumer(state)
}
}
/**
* Reusable logic for signaling a completion event or an error downstream,
* used in both `onError` and `onComplete`. The `error` param should
* be `null` for signaling a normal `onComplete`.
*/
@tailrec private def signalCompleteOrError(ex: Throwable): Unit = {
val state = stateRef.get
if (!state.upstreamShouldCancel) {
// signaling the completion of upstream to the consumer's run-loop
val update = state.copy(upstreamIsComplete = true, errorThrown = ex)
if (stateRef.compareAndSet(state, update))
pushToConsumer(update)
else // CAS failed, retry
signalCompleteOrError(ex)
}
}
def onError(ex: Throwable): Unit = {
signalCompleteOrError(ex)
}
def onComplete(): Unit = {
signalCompleteOrError(null)
}
/**
* Function that starts an asynchronous consumer run-loop or in case
* a run-loop is already in progress this function increments the
* itemsToPush count. And in case we've exceeded the bufferSize, then
* we start to apply back-pressure.
*/
@tailrec private def pushToConsumer(state: State): Future[Ack] = {
// no run-loop is active? then we need to start one
if (state.itemsToPush == 0) {
val update = state.copy(
nextAckPromise = Promise[Ack](),
appliesBackPressure = false,
itemsToPush = 1)
if (!stateRef.compareAndSet(state, update)) {
// CAS failed, retry
pushToConsumer(stateRef.get)
}
else {
scheduler.execute(new Runnable { def run() = fastLoop(update, 0, 0) })
Continue
}
}
else {
val appliesBackPressure = state.shouldBackPressure(bufferSize)
val update = state.copy(
itemsToPush = state.itemsToPush + 1,
appliesBackPressure = appliesBackPressure)
if (!stateRef.compareAndSet(state, update)) {
// CAS failed, retry
pushToConsumer(stateRef.get)
}
else if (appliesBackPressure) {
// the buffer is full, so we need to apply back-pressure
state.nextAckPromise.future
}
else {
// everything normal, buffer is not full
Continue
}
}
}
// Needed in fastLoop for usage in asynchronous callbacks
private def rescheduled(processed: Int): Unit = {
fastLoop(stateRef.get, processed, 0)
}
/**
* Starts a consumer run-loop that consumers everything we have in our
* queue, pushing those events to our downstream observer and then stops.
*/
@tailrec private def fastLoop(state: State, processed: Int, syncIndex: Int): Unit = {
// should be called when downstream is canceling or triggering a failure
def downstreamSignalCancel(): Unit = {
val ref = stateRef.transformAndGet(_.downstreamComplete)
ref.nextAckPromise.success(Cancel)
}
// should be called when signaling a complete
def downstreamSignalComplete(ex: Throwable = null): Unit = {
downstreamSignalCancel()
if (ex != null)
underlying.onError(ex)
else
underlying.onComplete()
}
// We protect the downstream, only doing this as long as the downstream
// hasn't canceled, or as long as we haven't signaled an onComplete or an
// onError event yet
if (!state.downstreamIsDone) {
// Processing until we're hitting `itemsToPush`
if (processed < state.itemsToPush) {
var consumed = 0
val nextSeq = {
val maxToConsume = batchSizeModulus + 1 - syncIndex
var buffer: mutable.ListBuffer[T] = null
var hadNext = true
do {
val next = queue.poll()
if (next == null) hadNext = false else {
hadNext = true
if (buffer == null) buffer = mutable.ListBuffer.empty
buffer += next
consumed += 1
}
} while(hadNext && consumed < maxToConsume)
buffer
}
if (nextSeq != null) {
val ack = underlying.onNext(nextSeq.toList)
// for establishing whether the next call is asynchronous,
// note that the check with batchSizeModulus is meant for splitting
// big synchronous loops in smaller batches
val nextIndex = if (!ack.isCompleted) 0 else
(syncIndex + consumed) & batchSizeModulus
if (nextIndex > 0) {
if (ack == Continue || ack.value.get == Continue.IsSuccess)
fastLoop(state, processed + consumed, nextIndex)
else if (ack == Cancel || ack.value.get == Cancel.IsSuccess) {
// ending loop
downstreamSignalCancel()
}
else {
// ending loop
val ex = ack.value.get.failed.getOrElse(new MatchError(ack.value.get))
downstreamSignalComplete(ex)
}
}
else ack.onComplete {
case Continue.IsSuccess =>
// re-run loop (in different thread)
rescheduled(processed + consumed)
case Cancel.IsSuccess =>
// ending loop
downstreamSignalCancel()
case failure =>
// ending loop
val ex = failure.failed.getOrElse(new MatchError(failure))
downstreamSignalComplete(ex)
}
}
else {
// upstreamIsComplete=true, ending loop
assert(state.upstreamIsComplete, "upstreamIsComplete should be true")
try downstreamSignalComplete(state.errorThrown) finally
queue.clear() // for GC purposes
}
}
else { // if processed == itemsToPush
val ref = state.declareProcessed(processed)
// trying update, if it fails it probably means
// we've got more items to process
if (stateRef.compareAndSet(state, ref)) {
// if in back-pressure mode, unblock
// note that we don't need to check that itemsToPush is zero
ref.nextAckPromise.success(Continue)
}
else {
// concurrent modifications happened, continuing loop
fastLoop(stateRef.get, processed, syncIndex)
}
}
}
}
}
private[monifu] object BatchedBufferedSubscriber {
/** Builder for [[BatchedBufferedSubscriber]] */
def apply[T](underlying: Subscriber[List[T]], bufferSize: Int): BatchedBufferedSubscriber[T] =
new BatchedBufferedSubscriber[T](underlying, bufferSize)
/** State used in our implementation to manage concurrency */
private case class State(
itemsToPush: Int = 0,
nextAckPromise: Promise[Ack] = Promise(),
appliesBackPressure: Boolean = false,
upstreamIsComplete: Boolean = false,
downstreamIsDone: Boolean = false,
errorThrown: Throwable = null) {
def upstreamShouldCancel: Boolean = {
upstreamIsComplete || downstreamIsDone
}
def shouldBackPressure(bufferSize: Int): Boolean = {
!upstreamIsComplete && (appliesBackPressure || itemsToPush >= bufferSize)
}
def downstreamComplete: State = {
copy(itemsToPush = 0, downstreamIsDone = true)
}
def declareProcessed(processed: Int): State = {
copy(itemsToPush = itemsToPush - processed)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy