monifu.reactive.observers.buffers.DropNewBufferedSubscriber.scala Maven / Gradle / Ivy
/*
* Copyright (c) 2014-2016 by its authors. Some rights reserved.
* See the project homepage at: https://monix.io
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package monifu.reactive.observers.buffers
import java.util.concurrent.ConcurrentLinkedQueue
import monifu.concurrent.atomic.padded.Atomic
import monifu.reactive.Ack.{Cancel, Continue}
import monifu.reactive.observers.{BufferedSubscriber, SynchronousSubscriber}
import monifu.reactive.observers.buffers.DropNewBufferedSubscriber.State
import monifu.reactive.{Ack, Subscriber}
import scala.annotation.tailrec
import scala.concurrent.Future
import scala.util.control.NonFatal
/**
* A high-performance and non-blocking [[BufferedSubscriber]] implementation
* for the [[monifu.reactive.OverflowStrategy.DropNew DropNew]]
* overflow strategy.
*/
private[buffers] final class DropNewBufferedSubscriber[-T] private
(underlying: Subscriber[T], bufferSize: Int, onOverflow: Long => T = null)
extends BufferedSubscriber[T] with SynchronousSubscriber[T] { self =>
require(bufferSize > 0, "bufferSize must be a strictly positive number")
implicit val scheduler = underlying.scheduler
// State for managing contention between multiple producers and one consumer
private[this] val stateRef = Atomic(State())
// Concurrent queue, producers can push into it without extra synchronization
// and there's a happens before relationship between `queue.offer` and
// incrementing `stateRef.itemsToPush`, which we are using on the consumer
// side in order to know how many items to process and when to stop
private[this] val queue = new ConcurrentLinkedQueue[T]()
// Used on the consumer side to split big synchronous workloads in batches
private[this] val batchSizeModulus = scheduler.env.batchSize - 1
@tailrec
def onNext(elem: T): Ack = {
val state = stateRef.get
// if upstream has completed or downstream canceled, we should cancel
if (state.upstreamShouldStop) Cancel else {
// itemsToPush is our current count of active (unprocessed) events
// and if it exceeds the bufferSize, then we've got an overflow
if (state.itemsToPush >= bufferSize) {
// no more room, dropping event
if (onOverflow == null || stateRef.compareAndSet(state, state.incrementDropped))
Continue
else // the compareAndSet has failed, retry
onNext(elem)
}
else if (onOverflow != null && state.eventsDropped > 0) {
// this branch happens when the buffer is free again, but
// we've had events dropped that have to be signaled
val update = state.copy(eventsDropped = 0)
if (!stateRef.compareAndSet(state, update))
onNext(elem) // CAS failed, so retry
else {
// composing the overflow message; we've got to do error handling
// because this is a user supplied function
val shouldContinue = try {
val message = onOverflow(state.eventsDropped)
queue.offer(message)
pushToConsumer(update)
true
}
catch {
case NonFatal(ex) =>
onError(ex)
false
}
if (shouldContinue)
onNext(elem)
else
Cancel
}
}
else {
// everything normal, we're just going to push our event
queue.offer(elem)
pushToConsumer(state)
Continue
}
}
}
def onError(ex: Throwable): Unit = {
signalCompleteOrError(ex)
}
def onComplete(): Unit = {
signalCompleteOrError(null)
}
/**
* Reusable logic for signaling a completion event or an error downstream,
* used in both `onError` and `onComplete`. The `error` param should
* be `null` for signaling a normal `onComplete`.
*/
private def signalCompleteOrError(error: Throwable): Unit = {
/* The purpose of `startToComplete` is to declare to the upstream
* that a completion operation is in effect, without the consumer
* run-loop noticing. This is because we want to stop upstream
* signals, then compose our overflow message in case we've got
* dropped events, enqueue it and only after that signal the
* onComplete or onError event to the consumer.
*/
@tailrec def startToComplete(error: Throwable): Unit = {
val state = stateRef.get
if (!state.upstreamShouldStop) {
// isDoneInProgress is our signal that gets noticed by our upstream
// but not by our consumer run-loop
val update = state.copy(isDoneInProgress = true, eventsDropped = 0)
if (stateRef.compareAndSet(state, update))
signal(state, state.eventsDropped, error)
else
// at this point all other onComplete/onError calls should be rejected
startToComplete(error)
}
}
/* Logic for sending our final overflow message, coupled with our final
* onComplete/onError event to the consumer's run-loop.
*/
@tailrec def signal(state: State, eventsDropped: Long, error: Throwable): Unit = {
// we ignore isDoneInProgress, but not upstreamIsComplete
if (!state.upstreamIsComplete) {
if (onOverflow != null && eventsDropped > 0) {
// composing the overflow message; we've got to do error handling
// because this is a user supplied function
val ex = try {
val message = onOverflow(state.eventsDropped)
queue.offer(message)
pushToConsumer(state)
null
}
catch {
case NonFatal(ref) => ref
}
if (ex != null) {
// we've got to signal our original error somewhere
if (error != null) scheduler.reportFailure(error)
signal(state, 0, ex)
}
else {
signal(state, 0, error)
}
}
else {
// signaling the completion of upstream to the consumer's run-loop
val update = state.copy(upstreamIsComplete = true, errorThrown = error)
if (stateRef.compareAndSet(state, update))
pushToConsumer(update)
else // CAS failed? retry
signal(stateRef.get, 0, error)
}
}
}
startToComplete(error)
}
/**
* Function that starts an asynchronous consumer run-loop or in case
* a run-loop is already in progress this function simply increments
* the itemsToPush count.
*/
@tailrec private def pushToConsumer(state: State): Future[Ack] = {
// whenever itemsToPush is zero, that means there is no active run-loop
// whenever it is different from zero, that means there is an active loop
if (state.itemsToPush <= 0) {
val update = state.copy(itemsToPush = 1)
if (!stateRef.compareAndSet(state, update)) {
pushToConsumer(stateRef.get) // retry
}
else {
scheduler.execute(new Runnable { def run() = fastLoop(update, 0, 0) })
Continue
}
}
else {
val update = state.incrementItemsToPush
if (!stateRef.compareAndSet(state, update))
pushToConsumer(stateRef.get) // retry
else
Continue
}
}
private def rescheduled(processed: Int): Unit = {
fastLoop(stateRef.get, processed, 0)
}
/**
* Starts a consumer run-loop that consumers everything we have in our
* queue, pushing those events to our downstream observer and then stops.
*/
@tailrec private def fastLoop(state: State, processed: Int, syncIndex: Int): Unit = {
// should be called when signaling a complete
def downstreamSignalComplete(ex: Throwable = null): Unit = {
stateRef.transformAndGet(_.downstreamComplete)
if (ex != null)
underlying.onError(ex)
else
underlying.onComplete()
}
// We protect the downstream, only doing this as long as the downstream
// hasn't canceled, or as long as we haven't signaled an onComplete or an
// onError event yet
if (!state.downstreamIsDone) {
// Processing until we're hitting `itemsToPush`
if (processed < state.itemsToPush) {
val next: T = queue.poll()
if (next != null) {
val ack = underlying.onNext(next)
// for establishing whether the next call is asynchronous,
// note that the check with batchSizeModulus is meant for splitting
// big synchronous loops in smaller batches
val nextIndex = if (!ack.isCompleted) 0 else
(syncIndex + 1) & batchSizeModulus
if (nextIndex > 0) {
if (ack == Continue || ack.value.get == Continue.IsSuccess)
fastLoop(state, processed + 1, nextIndex)
else if (ack == Cancel || ack.value.get == Cancel.IsSuccess) {
// ending loop
stateRef.transformAndGet(_.downstreamComplete)
}
else {
// ending loop
val ex = ack.value.get.failed.getOrElse(new MatchError(ack.value.get))
downstreamSignalComplete(ex)
}
}
else ack.onComplete {
case Continue.IsSuccess =>
// re-run loop (in different thread)
rescheduled(processed + 1)
case Cancel.IsSuccess =>
// ending loop
stateRef.transformAndGet(_.downstreamComplete)
case failure =>
// ending loop
val ex = failure.failed.getOrElse(new MatchError(failure))
downstreamSignalComplete(ex)
}
}
else {
// upstreamIsComplete=true, ending loop
assert(state.upstreamIsComplete, "upstreamIsComplete should be true")
try downstreamSignalComplete(state.errorThrown) finally
queue.clear() // for GC purposes
}
}
else {
// at this point processed == itemsToPush
val ref = state.declareProcessed(processed)
// trying update, if it fails it probably means we've got more
// items to process and if it succeeds it means we are done
// note that we don't need to check that itemsToPush is zero
if (!stateRef.compareAndSet(state, ref)) {
// concurrent modifications happened, continuing loop
fastLoop(stateRef.get, processed, syncIndex)
}
}
}
}
}
private[reactive] object DropNewBufferedSubscriber {
/**
* Returns an instance of a [[DropNewBufferedSubscriber]]
* for the [[monifu.reactive.OverflowStrategy.DropNew DropNew]]
* overflowStrategy.
*/
def simple[T](underlying: Subscriber[T], bufferSize: Int): SynchronousSubscriber[T] = {
new DropNewBufferedSubscriber[T](underlying, bufferSize, null)
}
/**
* Returns an instance of a [[DropNewBufferedSubscriber]]
* for the [[monifu.reactive.OverflowStrategy.DropNew DropNew]]
* overflowStrategy.
*/
def withSignal[T](underlying: Subscriber[T], bufferSize: Int, onOverflow: Long => T): SynchronousSubscriber[T] = {
new DropNewBufferedSubscriber[T](underlying, bufferSize, onOverflow)
}
/** State used in our implementation to manage concurrency */
private case class State(
itemsToPush: Int = 0,
eventsDropped: Long = 0L,
upstreamIsComplete: Boolean = false,
downstreamIsDone: Boolean = false,
isDoneInProgress: Boolean = false,
errorThrown: Throwable = null) {
def upstreamShouldStop: Boolean = {
upstreamIsComplete || downstreamIsDone || isDoneInProgress
}
def downstreamComplete: State = {
copy(itemsToPush = 0, downstreamIsDone = true)
}
def declareProcessed(processed: Int): State = {
copy(itemsToPush = itemsToPush - processed)
}
def incrementDropped: State = {
copy(eventsDropped = eventsDropped + 1)
}
def incrementItemsToPush: State = {
copy(itemsToPush = itemsToPush + 1)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy