org.mozilla.javascript.optimizer.Block Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rhino Show documentation
Show all versions of rhino Show documentation
Rhino is an open-source implementation of JavaScript written entirely in Java. It is typically
embedded into Java applications to provide scripting to end users.
The newest version!
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
package org.mozilla.javascript.optimizer;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.util.BitSet;
import java.util.HashMap;
import java.util.Map;
import org.mozilla.javascript.Node;
import org.mozilla.javascript.ObjArray;
import org.mozilla.javascript.ObjToIntMap;
import org.mozilla.javascript.Token;
import org.mozilla.javascript.ast.Jump;
class Block {
private static class FatBlock {
private static Block[] reduceToArray(ObjToIntMap map) {
Block[] result = null;
if (!map.isEmpty()) {
result = new Block[map.size()];
int i = 0;
ObjToIntMap.Iterator iter = map.newIterator();
for (iter.start(); !iter.done(); iter.next()) {
FatBlock fb = (FatBlock) (iter.getKey());
result[i++] = fb.realBlock;
}
}
return result;
}
void addSuccessor(FatBlock b) {
successors.put(b, 0);
}
void addPredecessor(FatBlock b) {
predecessors.put(b, 0);
}
Block[] getSuccessors() {
return reduceToArray(successors);
}
Block[] getPredecessors() {
return reduceToArray(predecessors);
}
// all the Blocks that come immediately after this
private ObjToIntMap successors = new ObjToIntMap();
// all the Blocks that come immediately before this
private ObjToIntMap predecessors = new ObjToIntMap();
Block realBlock;
}
Block(int startNodeIndex, int endNodeIndex) {
itsStartNodeIndex = startNodeIndex;
itsEndNodeIndex = endNodeIndex;
}
static void runFlowAnalyzes(OptFunctionNode fn, Node[] statementNodes) {
int paramCount = fn.fnode.getParamCount();
int varCount = fn.fnode.getParamAndVarCount();
int[] varTypes = new int[varCount];
// If the variable is a parameter, it could have any type.
for (int i = 0; i != paramCount; ++i) {
varTypes[i] = Optimizer.AnyType;
}
// If the variable is from a "var" statement, its typeEvent will be set
// when we see the setVar node.
for (int i = paramCount; i != varCount; ++i) {
varTypes[i] = Optimizer.NoType;
}
Block[] theBlocks = buildBlocks(statementNodes);
if (DEBUG) {
++debug_blockCount;
System.out.println(
"-------------------"
+ fn.fnode.getFunctionName()
+ " "
+ debug_blockCount
+ "--------");
System.out.println(fn.fnode.toStringTree(fn.fnode));
System.out.println(toString(theBlocks, statementNodes));
}
reachingDefDataFlow(fn, statementNodes, theBlocks, varTypes);
typeFlow(fn, statementNodes, theBlocks, varTypes);
if (DEBUG) {
for (Block theBlock : theBlocks) {
System.out.println("For block " + theBlock.itsBlockID);
theBlock.printLiveOnEntrySet(fn);
}
System.out.println("Variable Table, size = " + varCount);
for (int i = 0; i != varCount; i++) {
System.out.println("[" + i + "] type: " + varTypes[i]);
}
}
for (int i = paramCount; i != varCount; i++) {
if (varTypes[i] == Optimizer.NumberType) {
fn.setIsNumberVar(i);
}
}
}
private static Block[] buildBlocks(Node[] statementNodes) {
// a mapping from each target node to the block it begins
Map theTargetBlocks = new HashMap<>();
ObjArray theBlocks = new ObjArray();
// there's a block that starts at index 0
int beginNodeIndex = 0;
for (int i = 0; i < statementNodes.length; i++) {
switch (statementNodes[i].getType()) {
case Token.TARGET:
{
if (i != beginNodeIndex) {
FatBlock fb = newFatBlock(beginNodeIndex, i - 1);
if (statementNodes[beginNodeIndex].getType() == Token.TARGET) {
theTargetBlocks.put(statementNodes[beginNodeIndex], fb);
}
theBlocks.add(fb);
// start the next block at this node
beginNodeIndex = i;
}
}
break;
case Token.IFNE:
case Token.IFEQ:
case Token.GOTO:
{
FatBlock fb = newFatBlock(beginNodeIndex, i);
if (statementNodes[beginNodeIndex].getType() == Token.TARGET) {
theTargetBlocks.put(statementNodes[beginNodeIndex], fb);
}
theBlocks.add(fb);
// start the next block at the next node
beginNodeIndex = i + 1;
}
break;
}
}
if (beginNodeIndex != statementNodes.length) {
FatBlock fb = newFatBlock(beginNodeIndex, statementNodes.length - 1);
if (statementNodes[beginNodeIndex].getType() == Token.TARGET) {
theTargetBlocks.put(statementNodes[beginNodeIndex], fb);
}
theBlocks.add(fb);
}
// build successor and predecessor links
for (int i = 0; i < theBlocks.size(); i++) {
FatBlock fb = (FatBlock) (theBlocks.get(i));
Node blockEndNode = statementNodes[fb.realBlock.itsEndNodeIndex];
int blockEndNodeType = blockEndNode.getType();
if ((blockEndNodeType != Token.GOTO) && (i < (theBlocks.size() - 1))) {
FatBlock fallThruTarget = (FatBlock) (theBlocks.get(i + 1));
fb.addSuccessor(fallThruTarget);
fallThruTarget.addPredecessor(fb);
}
if ((blockEndNodeType == Token.IFNE)
|| (blockEndNodeType == Token.IFEQ)
|| (blockEndNodeType == Token.GOTO)) {
Node target = ((Jump) blockEndNode).target;
FatBlock branchTargetBlock = theTargetBlocks.get(target);
target.putProp(Node.TARGETBLOCK_PROP, branchTargetBlock.realBlock);
fb.addSuccessor(branchTargetBlock);
branchTargetBlock.addPredecessor(fb);
}
}
Block[] result = new Block[theBlocks.size()];
for (int i = 0; i < theBlocks.size(); i++) {
FatBlock fb = (FatBlock) (theBlocks.get(i));
Block b = fb.realBlock;
b.itsSuccessors = fb.getSuccessors();
b.itsPredecessors = fb.getPredecessors();
b.itsBlockID = i;
result[i] = b;
}
return result;
}
private static FatBlock newFatBlock(int startNodeIndex, int endNodeIndex) {
FatBlock fb = new FatBlock();
fb.realBlock = new Block(startNodeIndex, endNodeIndex);
return fb;
}
private static String toString(Block[] blockList, Node[] statementNodes) {
if (!DEBUG) return null;
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);
pw.println(blockList.length + " Blocks");
for (Block b : blockList) {
pw.println("#" + b.itsBlockID);
pw.println(
"from "
+ b.itsStartNodeIndex
+ " "
+ statementNodes[b.itsStartNodeIndex].toString());
pw.println(
"thru "
+ b.itsEndNodeIndex
+ " "
+ statementNodes[b.itsEndNodeIndex].toString());
pw.print("Predecessors ");
if (b.itsPredecessors != null) {
for (int j = 0; j < b.itsPredecessors.length; j++) {
pw.print(b.itsPredecessors[j].itsBlockID + " ");
}
pw.println();
} else {
pw.println("none");
}
pw.print("Successors ");
if (b.itsSuccessors != null) {
for (int j = 0; j < b.itsSuccessors.length; j++) {
pw.print(b.itsSuccessors[j].itsBlockID + " ");
}
pw.println();
} else {
pw.println("none");
}
}
return sw.toString();
}
private static void reachingDefDataFlow(
OptFunctionNode fn, Node[] statementNodes, Block[] theBlocks, int[] varTypes) {
/*
initialize the liveOnEntry and liveOnExit sets, then discover the variables
that are def'd by each function, and those that are used before being def'd
(hence liveOnEntry)
*/
for (Block theBlock : theBlocks) {
theBlock.initLiveOnEntrySets(fn, statementNodes);
}
/*
this visits every block starting at the last, re-adding the predecessors of
any block whose inputs change as a result of the dataflow.
REMIND, better would be to visit in CFG postorder
*/
boolean[] visit = new boolean[theBlocks.length];
boolean[] doneOnce = new boolean[theBlocks.length];
int vIndex = theBlocks.length - 1;
boolean needRescan = false;
visit[vIndex] = true;
while (true) {
if (visit[vIndex] || !doneOnce[vIndex]) {
doneOnce[vIndex] = true;
visit[vIndex] = false;
if (theBlocks[vIndex].doReachedUseDataFlow()) {
Block[] pred = theBlocks[vIndex].itsPredecessors;
if (pred != null) {
for (Block block : pred) {
int index = block.itsBlockID;
visit[index] = true;
needRescan |= (index > vIndex);
}
}
}
}
if (vIndex == 0) {
if (needRescan) {
vIndex = theBlocks.length - 1;
needRescan = false;
} else {
break;
}
} else {
vIndex--;
}
}
/*
if any variable is live on entry to block 0, we have to mark it as
not jRegable - since it means that someone is trying to access the
'undefined'-ness of that variable.
*/
theBlocks[0].markAnyTypeVariables(varTypes);
}
private static void typeFlow(
OptFunctionNode fn, Node[] statementNodes, Block[] theBlocks, int[] varTypes) {
boolean[] visit = new boolean[theBlocks.length];
boolean[] doneOnce = new boolean[theBlocks.length];
int vIndex = 0;
boolean needRescan = false;
visit[vIndex] = true;
while (true) {
if (visit[vIndex] || !doneOnce[vIndex]) {
doneOnce[vIndex] = true;
visit[vIndex] = false;
if (theBlocks[vIndex].doTypeFlow(fn, statementNodes, varTypes)) {
Block[] succ = theBlocks[vIndex].itsSuccessors;
if (succ != null) {
for (Block block : succ) {
int index = block.itsBlockID;
visit[index] = true;
needRescan |= (index < vIndex);
}
}
}
}
if (vIndex == (theBlocks.length - 1)) {
if (needRescan) {
vIndex = 0;
needRescan = false;
} else {
break;
}
} else {
vIndex++;
}
}
}
private static boolean assignType(int[] varTypes, int index, int type) {
int prev = varTypes[index];
return prev != (varTypes[index] |= type);
}
private void markAnyTypeVariables(int[] varTypes) {
for (int i = 0; i != varTypes.length; i++) {
if (itsLiveOnEntrySet.get(i)) {
assignType(varTypes, i, Optimizer.AnyType);
}
}
}
/*
We're tracking uses and defs - in order to
build the def set and to identify the last use
nodes.
The itsNotDefSet is built reversed then flipped later.
*/
private void lookForVariableAccess(OptFunctionNode fn, Node n) {
switch (n.getType()) {
case Token.TYPEOFNAME:
{
// TYPEOFNAME may be used with undefined names, which is why
// this is handled separately from GETVAR above.
int varIndex = fn.fnode.getIndexForNameNode(n);
if (varIndex > -1 && !itsNotDefSet.get(varIndex))
itsUseBeforeDefSet.set(varIndex);
}
break;
case Token.DEC:
case Token.INC:
{
Node child = n.getFirstChild();
if (child.getType() == Token.GETVAR) {
int varIndex = fn.getVarIndex(child);
if (!itsNotDefSet.get(varIndex)) itsUseBeforeDefSet.set(varIndex);
itsNotDefSet.set(varIndex);
} else {
lookForVariableAccess(fn, child);
}
}
break;
case Token.SETVAR:
case Token.SETCONSTVAR:
{
Node lhs = n.getFirstChild();
Node rhs = lhs.getNext();
lookForVariableAccess(fn, rhs);
itsNotDefSet.set(fn.getVarIndex(n));
}
break;
case Token.GETVAR:
{
int varIndex = fn.getVarIndex(n);
if (!itsNotDefSet.get(varIndex)) itsUseBeforeDefSet.set(varIndex);
}
break;
default:
Node child = n.getFirstChild();
while (child != null) {
lookForVariableAccess(fn, child);
child = child.getNext();
}
break;
}
}
/*
build the live on entry/exit sets.
Then walk the trees looking for defs/uses of variables
and build the def and useBeforeDef sets.
*/
private void initLiveOnEntrySets(OptFunctionNode fn, Node[] statementNodes) {
int listLength = fn.getVarCount();
itsUseBeforeDefSet = new BitSet(listLength);
itsNotDefSet = new BitSet(listLength);
itsLiveOnEntrySet = new BitSet(listLength);
itsLiveOnExitSet = new BitSet(listLength);
for (int i = itsStartNodeIndex; i <= itsEndNodeIndex; i++) {
Node n = statementNodes[i];
lookForVariableAccess(fn, n);
}
itsNotDefSet.flip(0, listLength); // truth in advertising
}
/*
the liveOnEntry of each successor is the liveOnExit for this block.
The liveOnEntry for this block is -
liveOnEntry = liveOnExit - defsInThisBlock + useBeforeDefsInThisBlock
*/
private boolean doReachedUseDataFlow() {
itsLiveOnExitSet.clear();
if (itsSuccessors != null) {
for (Block itsSuccessor : itsSuccessors) {
itsLiveOnExitSet.or(itsSuccessor.itsLiveOnEntrySet);
}
}
return updateEntrySet(
itsLiveOnEntrySet, itsLiveOnExitSet,
itsUseBeforeDefSet, itsNotDefSet);
}
private static boolean updateEntrySet(
BitSet entrySet, BitSet exitSet, BitSet useBeforeDef, BitSet notDef) {
int card = entrySet.cardinality();
entrySet.or(exitSet);
entrySet.and(notDef);
entrySet.or(useBeforeDef);
return entrySet.cardinality() != card;
}
/*
the type of an expression is relatively unknown. Cases we can be sure
about are -
Literals,
Arithmetic operations - always return a Number
*/
private static int findExpressionType(OptFunctionNode fn, Node n, int[] varTypes) {
switch (n.getType()) {
case Token.NUMBER:
return Optimizer.NumberType;
case Token.CALL:
case Token.NEW:
case Token.REF_CALL:
return Optimizer.AnyType;
case Token.GETELEM:
case Token.GETPROP:
case Token.NAME:
case Token.THIS:
return Optimizer.AnyType;
case Token.GETVAR:
return varTypes[fn.getVarIndex(n)];
case Token.INC:
case Token.DEC:
case Token.MUL:
case Token.DIV:
case Token.MOD:
case Token.EXP:
case Token.BITOR:
case Token.BITXOR:
case Token.BITAND:
case Token.BITNOT:
case Token.LSH:
case Token.RSH:
case Token.URSH:
case Token.SUB:
case Token.POS:
case Token.NEG:
return Optimizer.NumberType;
case Token.VOID:
// NYI: undefined type
return Optimizer.AnyType;
case Token.FALSE:
case Token.TRUE:
case Token.EQ:
case Token.NE:
case Token.LT:
case Token.LE:
case Token.GT:
case Token.GE:
case Token.SHEQ:
case Token.SHNE:
case Token.NOT:
case Token.INSTANCEOF:
case Token.IN:
case Token.DEL_REF:
case Token.DELPROP:
// NYI: boolean type
return Optimizer.AnyType;
case Token.STRING:
case Token.TYPEOF:
case Token.TYPEOFNAME:
// NYI: string type
return Optimizer.AnyType;
case Token.NULL:
case Token.REGEXP:
case Token.ARRAYCOMP:
case Token.ARRAYLIT:
case Token.OBJECTLIT:
case Token.TEMPLATE_LITERAL:
case Token.BIGINT:
return Optimizer.AnyType; // XXX: actually, we know it's not
// number, but no type yet for that
case Token.ADD:
{
// if the lhs & rhs are known to be numbers, we can be sure that's
// the result, otherwise it could be a string.
Node child = n.getFirstChild();
int lType = findExpressionType(fn, child, varTypes);
int rType = findExpressionType(fn, child.getNext(), varTypes);
return lType | rType; // we're not distinguishing strings yet
}
case Token.HOOK:
{
Node ifTrue = n.getFirstChild().getNext();
Node ifFalse = ifTrue.getNext();
int ifTrueType = findExpressionType(fn, ifTrue, varTypes);
int ifFalseType = findExpressionType(fn, ifFalse, varTypes);
return ifTrueType | ifFalseType;
}
case Token.COMMA:
case Token.SETVAR:
case Token.SETCONSTVAR:
case Token.SETNAME:
case Token.SETPROP:
case Token.SETELEM:
return findExpressionType(fn, n.getLastChild(), varTypes);
case Token.AND:
case Token.OR:
{
Node child = n.getFirstChild();
int lType = findExpressionType(fn, child, varTypes);
int rType = findExpressionType(fn, child.getNext(), varTypes);
return lType | rType;
}
}
return Optimizer.AnyType;
}
private static boolean findDefPoints(OptFunctionNode fn, Node n, int[] varTypes) {
boolean result = false;
Node first = n.getFirstChild();
for (Node next = first; next != null; next = next.getNext()) {
result |= findDefPoints(fn, next, varTypes);
}
switch (n.getType()) {
case Token.DEC:
case Token.INC:
if (first.getType() == Token.GETVAR) {
// theVar is a Number now
int i = fn.getVarIndex(first);
if (!fn.fnode.getParamAndVarConst()[i]) {
result |= assignType(varTypes, i, Optimizer.NumberType);
}
}
break;
case Token.SETVAR:
case Token.SETCONSTVAR:
{
Node rValue = first.getNext();
int theType = findExpressionType(fn, rValue, varTypes);
int i = fn.getVarIndex(n);
if (!(n.getType() == Token.SETVAR && fn.fnode.getParamAndVarConst()[i])) {
result |= assignType(varTypes, i, theType);
}
break;
}
}
return result;
}
private boolean doTypeFlow(OptFunctionNode fn, Node[] statementNodes, int[] varTypes) {
boolean changed = false;
for (int i = itsStartNodeIndex; i <= itsEndNodeIndex; i++) {
Node n = statementNodes[i];
if (n != null) {
changed |= findDefPoints(fn, n, varTypes);
}
}
return changed;
}
private void printLiveOnEntrySet(OptFunctionNode fn) {
if (DEBUG) {
for (int i = 0; i < fn.getVarCount(); i++) {
String name = fn.fnode.getParamOrVarName(i);
if (itsUseBeforeDefSet.get(i)) System.out.println(name + " is used before def'd");
if (itsNotDefSet.get(i)) System.out.println(name + " is not def'd");
if (itsLiveOnEntrySet.get(i)) System.out.println(name + " is live on entry");
if (itsLiveOnExitSet.get(i)) System.out.println(name + " is live on exit");
}
}
}
// all the Blocks that come immediately after this
private Block[] itsSuccessors;
// all the Blocks that come immediately before this
private Block[] itsPredecessors;
private int itsStartNodeIndex; // the Node at the start of the block
private int itsEndNodeIndex; // the Node at the end of the block
private int itsBlockID; // a unique index for each block
// reaching def bit sets -
private BitSet itsLiveOnEntrySet;
private BitSet itsLiveOnExitSet;
private BitSet itsUseBeforeDefSet;
private BitSet itsNotDefSet;
static final boolean DEBUG = false;
private static int debug_blockCount;
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy