org.mozilla.javascript.regexp.NativeRegExp Maven / Gradle / Ivy
Show all versions of rhino Show documentation
/* -*- Mode: java; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
package org.mozilla.javascript.regexp;
import java.io.Serializable;
import org.mozilla.javascript.Context;
import org.mozilla.javascript.IdFunctionObject;
import org.mozilla.javascript.IdScriptableObject;
import org.mozilla.javascript.Kit;
import org.mozilla.javascript.NativeObject;
import org.mozilla.javascript.ScriptRuntime;
import org.mozilla.javascript.ScriptRuntimeES6;
import org.mozilla.javascript.Scriptable;
import org.mozilla.javascript.ScriptableObject;
import org.mozilla.javascript.Symbol;
import org.mozilla.javascript.SymbolKey;
import org.mozilla.javascript.TopLevel;
import org.mozilla.javascript.Undefined;
/**
* This class implements the RegExp native object.
*
* Revision History: Implementation in C by Brendan Eich Initial port to Java by Norris Boyd from
* jsregexp.c version 1.36 Merged up to version 1.38, which included Unicode support. Merged bug
* fixes in version 1.39. Merged JSFUN13_BRANCH changes up to 1.32.2.13
*
* @author Brendan Eich
* @author Norris Boyd
*/
public class NativeRegExp extends IdScriptableObject {
private static final long serialVersionUID = 4965263491464903264L;
private static final Object REGEXP_TAG = new Object();
public static final int JSREG_GLOB = 0x1; // 'g' flag: global
public static final int JSREG_FOLD = 0x2; // 'i' flag: fold
public static final int JSREG_MULTILINE = 0x4; // 'm' flag: multiline
public static final int JSREG_DOTALL = 0x8; // 's' flag: dotAll
public static final int JSREG_STICKY = 0x10; // 'y' flag: sticky
// type of match to perform
public static final int TEST = 0;
public static final int MATCH = 1;
public static final int PREFIX = 2;
private static final boolean debug = false;
private static final byte REOP_SIMPLE_START = 1; /* start of 'simple opcodes' */
private static final byte REOP_EMPTY = 1; /* match rest of input against rest of r.e. */
private static final byte REOP_BOL = 2; /* beginning of input (or line if multiline) */
private static final byte REOP_EOL = 3; /* end of input (or line if multiline) */
private static final byte REOP_WBDRY = 4; /* match "" at word boundary */
private static final byte REOP_WNONBDRY = 5; /* match "" at word non-boundary */
private static final byte REOP_DOT = 6; /* stands for any character */
private static final byte REOP_DIGIT = 7; /* match a digit char: [0-9] */
private static final byte REOP_NONDIGIT = 8; /* match a non-digit char: [^0-9] */
private static final byte REOP_ALNUM = 9; /* match an alphanumeric char: [0-9a-z_A-Z] */
private static final byte REOP_NONALNUM = 10; /* match a non-alphanumeric char: [^0-9a-z_A-Z] */
private static final byte REOP_SPACE = 11; /* match a whitespace char */
private static final byte REOP_NONSPACE = 12; /* match a non-whitespace char */
private static final byte REOP_BACKREF = 13; /* back-reference (e.g., \1) to a parenthetical */
private static final byte REOP_FLAT = 14; /* match a flat string */
private static final byte REOP_FLAT1 = 15; /* match a single char */
private static final byte REOP_FLATi = 16; /* case-independent REOP_FLAT */
private static final byte REOP_FLAT1i = 17; /* case-independent REOP_FLAT1 */
private static final byte REOP_UCFLAT1 = 18; /* single Unicode char */
private static final byte REOP_UCFLAT1i = 19; /* case-independent REOP_UCFLAT1 */
// private static final byte REOP_UCFLAT = 20; /* flat Unicode string; len immediate
// counts chars */
// private static final byte REOP_UCFLATi = 21; /* case-independent REOP_UCFLAT */
private static final byte REOP_CLASS = 22; /* character class with index */
private static final byte REOP_NCLASS = 23; /* negated character class with index */
private static final byte REOP_SIMPLE_END = 23; /* end of 'simple opcodes' */
private static final byte REOP_QUANT = 25; /* quantified atom: atom{1,2} */
private static final byte REOP_STAR = 26; /* zero or more occurrences of kid */
private static final byte REOP_PLUS = 27; /* one or more occurrences of kid */
private static final byte REOP_OPT = 28; /* optional subexpression in kid */
private static final byte REOP_LPAREN =
29; /* left paren bytecode: kid is u.num'th sub-regexp */
private static final byte REOP_RPAREN = 30; /* right paren bytecode */
private static final byte REOP_ALT = 31; /* alternative subexpressions in kid and next */
private static final byte REOP_JUMP = 32; /* for deoptimized closure loops */
// private static final byte REOP_DOTSTAR = 33; /* optimize .* to use a single opcode
// */
// private static final byte REOP_ANCHOR = 34; /* like .* but skips left context to
// unanchored r.e. */
// private static final byte REOP_EOLONLY = 35; /* $ not preceded by any pattern */
// private static final byte REOP_BACKREFi = 37; /* case-independent REOP_BACKREF */
// private static final byte REOP_LPARENNON = 40; /* non-capturing version of REOP_LPAREN
// */
private static final byte REOP_ASSERT = 41; /* zero width positive lookahead assertion */
private static final byte REOP_ASSERT_NOT = 42; /* zero width negative lookahead assertion */
private static final byte REOP_ASSERTTEST = 43; /* sentinel at end of assertion child */
private static final byte REOP_ASSERTNOTTEST = 44; /* sentinel at end of !assertion child */
private static final byte REOP_MINIMALSTAR = 45; /* non-greedy version of * */
private static final byte REOP_MINIMALPLUS = 46; /* non-greedy version of + */
private static final byte REOP_MINIMALOPT = 47; /* non-greedy version of ? */
private static final byte REOP_MINIMALQUANT = 48; /* non-greedy version of {} */
private static final byte REOP_ENDCHILD = 49; /* sentinel at end of quantifier child */
private static final byte REOP_REPEAT = 51; /* directs execution of greedy quantifier */
private static final byte REOP_MINIMALREPEAT =
52; /* directs execution of non-greedy quantifier */
private static final byte REOP_ALTPREREQ = 53; /* prerequisite for ALT, either of two chars */
private static final byte REOP_ALTPREREQi = 54; /* case-independent REOP_ALTPREREQ */
private static final byte REOP_ALTPREREQ2 = 55; /* prerequisite for ALT, a char or a class */
// private static final byte REOP_ENDALT = 56; /* end of final alternate */
private static final byte REOP_END = 57;
private static final int ANCHOR_BOL = -2;
public static void init(Context cx, Scriptable scope, boolean sealed) {
NativeRegExp proto = NativeRegExpInstantiator.withLanguageVersion(cx.getLanguageVersion());
proto.re = compileRE(cx, "", null, false);
proto.activatePrototypeMap(MAX_PROTOTYPE_ID);
proto.setParentScope(scope);
proto.setPrototype(getObjectPrototype(scope));
NativeRegExpCtor ctor = new NativeRegExpCtor();
// Bug #324006: ECMA-262 15.10.6.1 says "The initial value of
// RegExp.prototype.constructor is the builtin RegExp constructor."
proto.defineProperty("constructor", ctor, ScriptableObject.DONTENUM);
ScriptRuntime.setFunctionProtoAndParent(ctor, cx, scope);
ctor.setImmunePrototypeProperty(proto);
if (sealed) {
proto.sealObject();
ctor.sealObject();
}
defineProperty(scope, "RegExp", ctor, ScriptableObject.DONTENUM);
ScriptRuntimeES6.addSymbolSpecies(cx, scope, ctor);
}
NativeRegExp(Scriptable scope, RECompiled regexpCompiled) {
this.re = regexpCompiled;
setLastIndex(ScriptRuntime.zeroObj);
ScriptRuntime.setBuiltinProtoAndParent(this, scope, TopLevel.Builtins.RegExp);
}
@Override
public String getClassName() {
return "RegExp";
}
/**
* Gets the value to be returned by the typeof operator called on this object.
*
* @see org.mozilla.javascript.ScriptableObject#getTypeOf()
* @return "object"
*/
@Override
public String getTypeOf() {
return "object";
}
Scriptable compile(Context cx, Scriptable scope, Object[] args) {
if (args.length > 0 && args[0] instanceof NativeRegExp) {
if (args.length > 1 && args[1] != Undefined.instance) {
// report error
throw ScriptRuntime.typeErrorById("msg.bad.regexp.compile");
}
NativeRegExp thatObj = (NativeRegExp) args[0];
this.re = thatObj.re;
setLastIndex(thatObj.lastIndex);
return this;
}
String s = args.length == 0 || args[0] instanceof Undefined ? "" : escapeRegExp(args[0]);
String global =
args.length > 1 && args[1] != Undefined.instance
? ScriptRuntime.toString(args[1])
: null;
this.re = compileRE(cx, s, global, false);
setLastIndex(ScriptRuntime.zeroObj);
return this;
}
@Override
public String toString() {
StringBuilder buf = new StringBuilder();
buf.append('/');
if (re.source.length != 0) {
buf.append(re.source);
} else {
// See bugzilla 226045
buf.append("(?:)");
}
buf.append('/');
appendFlags(buf);
return buf.toString();
}
private void appendFlags(StringBuilder buf) {
if ((re.flags & JSREG_GLOB) != 0) buf.append('g');
if ((re.flags & JSREG_FOLD) != 0) buf.append('i');
if ((re.flags & JSREG_MULTILINE) != 0) buf.append('m');
if ((re.flags & JSREG_DOTALL) != 0) buf.append('s');
if ((re.flags & JSREG_STICKY) != 0) buf.append('y');
}
NativeRegExp() {}
private static RegExpImpl getImpl(Context cx) {
return (RegExpImpl) ScriptRuntime.getRegExpProxy(cx);
}
private static String escapeRegExp(Object src) {
String s = ScriptRuntime.toString(src);
// Escape any naked slashes in regexp source, see bug #510265
StringBuilder sb = null; // instantiated only if necessary
int start = 0;
int slash = s.indexOf('/');
while (slash > -1) {
if (slash == start || s.charAt(slash - 1) != '\\') {
if (sb == null) {
sb = new StringBuilder();
}
sb.append(s, start, slash);
sb.append("\\/");
start = slash + 1;
}
slash = s.indexOf('/', slash + 1);
}
if (sb != null) {
sb.append(s, start, s.length());
s = sb.toString();
}
return s;
}
Object execSub(Context cx, Scriptable scopeObj, Object[] args, int matchType) {
RegExpImpl reImpl = getImpl(cx);
String str;
if (args.length == 0) {
str = reImpl.input;
if (str == null) {
str = ScriptRuntime.toString(Undefined.instance);
}
} else {
str = ScriptRuntime.toString(args[0]);
}
boolean globalOrSticky = (re.flags & JSREG_GLOB) != 0 || (re.flags & JSREG_STICKY) != 0;
double d = 0;
if (globalOrSticky) {
d = ScriptRuntime.toInteger(lastIndex);
if (d < 0 || str.length() < d) {
setLastIndex(ScriptRuntime.zeroObj);
return null;
}
}
int[] indexp = {(int) d};
Object rval = executeRegExp(cx, scopeObj, reImpl, str, indexp, matchType);
if (globalOrSticky) {
if (rval == null || rval == Undefined.instance) {
setLastIndex(ScriptRuntime.zeroObj);
} else {
setLastIndex(Double.valueOf(indexp[0]));
}
}
return rval;
}
static RECompiled compileRE(Context cx, String str, String global, boolean flat) {
RECompiled regexp = new RECompiled(str);
int length = str.length();
int flags = 0;
if (global != null) {
for (int i = 0; i < global.length(); i++) {
char c = global.charAt(i);
int f = 0;
if (c == 'g') {
f = JSREG_GLOB;
} else if (c == 'i') {
f = JSREG_FOLD;
} else if (c == 'm') {
f = JSREG_MULTILINE;
} else if (c == 's') {
f = JSREG_DOTALL;
} else if (c == 'y') {
f = JSREG_STICKY;
} else {
reportError("msg.invalid.re.flag", String.valueOf(c));
}
if ((flags & f) != 0) {
reportError("msg.invalid.re.flag", String.valueOf(c));
}
flags |= f;
}
}
regexp.flags = flags;
CompilerState state = new CompilerState(cx, regexp.source, length, flags);
if (flat && length > 0) {
if (debug) {
System.out.println("flat = \"" + str + "\"");
}
state.result = new RENode(REOP_FLAT);
state.result.chr = state.cpbegin[0];
state.result.length = length;
state.result.flatIndex = 0;
state.progLength += 5;
} else {
if (!parseDisjunction(state)) return null;
// Need to reparse if pattern contains invalid backreferences:
// "Note: if the number of left parentheses is less than the number
// specified in \#, the \# is taken as an octal escape"
if (state.maxBackReference > state.parenCount) {
state = new CompilerState(cx, regexp.source, length, flags);
state.backReferenceLimit = state.parenCount;
if (!parseDisjunction(state)) return null;
}
}
regexp.program = new byte[state.progLength + 1];
if (state.classCount != 0) {
regexp.classList = new RECharSet[state.classCount];
regexp.classCount = state.classCount;
}
int endPC = emitREBytecode(state, regexp, 0, state.result);
regexp.program[endPC++] = REOP_END;
if (debug) {
System.out.println("Prog. length = " + endPC);
for (int i = 0; i < endPC; i++) {
System.out.print(regexp.program[i]);
if (i < (endPC - 1)) System.out.print(", ");
}
System.out.println();
}
regexp.parenCount = state.parenCount;
// If re starts with literal, init anchorCh accordingly
switch (regexp.program[0]) {
case REOP_UCFLAT1:
case REOP_UCFLAT1i:
regexp.anchorCh = (char) getIndex(regexp.program, 1);
break;
case REOP_FLAT1:
case REOP_FLAT1i:
regexp.anchorCh = (char) (regexp.program[1] & 0xFF);
break;
case REOP_FLAT:
case REOP_FLATi:
int k = getIndex(regexp.program, 1);
regexp.anchorCh = regexp.source[k];
break;
case REOP_BOL:
regexp.anchorCh = ANCHOR_BOL;
break;
case REOP_ALT:
RENode n = state.result;
if (n.kid.op == REOP_BOL && n.kid2.op == REOP_BOL) {
regexp.anchorCh = ANCHOR_BOL;
}
break;
}
if (debug) {
if (regexp.anchorCh >= 0) {
System.out.println("Anchor ch = '" + (char) regexp.anchorCh + "'");
}
}
return regexp;
}
static boolean isDigit(char c) {
return '0' <= c && c <= '9';
}
private static boolean isWord(char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || isDigit(c) || c == '_';
}
private static boolean isControlLetter(char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z');
}
private static boolean isLineTerm(char c) {
return ScriptRuntime.isJSLineTerminator(c);
}
private static boolean isREWhiteSpace(int c) {
return ScriptRuntime.isJSWhitespaceOrLineTerminator(c);
}
/*
*
* 1. If IgnoreCase is false, return ch.
* 2. Let u be ch converted to upper case as if by calling
* String.prototype.toUpperCase on the one-character string ch.
* 3. If u does not consist of a single character, return ch.
* 4. Let cu be u's character.
* 5. If ch's code point value is greater than or equal to decimal 128 and cu's
* code point value is less than decimal 128, then return ch.
* 6. Return cu.
*/
private static char upcase(char ch) {
if (ch < 128) {
if ('a' <= ch && ch <= 'z') {
return (char) (ch + ('A' - 'a'));
}
return ch;
}
char cu = Character.toUpperCase(ch);
return (cu < 128) ? ch : cu;
}
private static char downcase(char ch) {
if (ch < 128) {
if ('A' <= ch && ch <= 'Z') {
return (char) (ch + ('a' - 'A'));
}
return ch;
}
char cl = Character.toLowerCase(ch);
return (cl < 128) ? ch : cl;
}
/*
* Validates and converts hex ascii value.
*/
private static int toASCIIHexDigit(int c) {
if (c < '0') return -1;
if (c <= '9') {
return c - '0';
}
c |= 0x20;
if ('a' <= c && c <= 'f') {
return c - 'a' + 10;
}
return -1;
}
/*
* Top-down regular expression grammar, based closely on Perl4.
*
* regexp: altern A regular expression is one or more
* altern '|' regexp alternatives separated by vertical bar.
*/
private static boolean parseDisjunction(CompilerState state) {
if (!parseAlternative(state)) return false;
char[] source = state.cpbegin;
int index = state.cp;
if (index != source.length && source[index] == '|') {
RENode result;
++state.cp;
result = new RENode(REOP_ALT);
result.kid = state.result;
if (!parseDisjunction(state)) return false;
result.kid2 = state.result;
state.result = result;
/*
* Look at both alternates to see if there's a FLAT or a CLASS at
* the start of each. If so, use a prerequisite match.
*/
if (result.kid.op == REOP_FLAT && result.kid2.op == REOP_FLAT) {
result.op = (state.flags & JSREG_FOLD) == 0 ? REOP_ALTPREREQ : REOP_ALTPREREQi;
result.chr = result.kid.chr;
result.index = result.kid2.chr;
/* ALTPREREQ, uch1, uch2, , ...,
JUMP, ... JUMP, */
state.progLength += 13;
} else if (result.kid.op == REOP_CLASS
&& result.kid.index < 256
&& result.kid2.op == REOP_FLAT
&& (state.flags & JSREG_FOLD) == 0) {
result.op = REOP_ALTPREREQ2;
result.chr = result.kid2.chr;
result.index = result.kid.index;
/* ALTPREREQ2, uch1, uch2, , ...,
JUMP, ... JUMP, */
state.progLength += 13;
} else if (result.kid.op == REOP_FLAT
&& result.kid2.op == REOP_CLASS
&& result.kid2.index < 256
&& (state.flags & JSREG_FOLD) == 0) {
result.op = REOP_ALTPREREQ2;
result.chr = result.kid.chr;
result.index = result.kid2.index;
/* ALTPREREQ2, uch1, uch2, , ...,
JUMP, ... JUMP, */
state.progLength += 13;
} else {
/* ALT, , ..., JUMP, ... JUMP, */
state.progLength += 9;
}
}
return true;
}
/*
* altern: item An alternative is one or more items,
* item altern concatenated together.
*/
private static boolean parseAlternative(CompilerState state) {
RENode headTerm = null;
RENode tailTerm = null;
char[] source = state.cpbegin;
while (true) {
if (state.cp == state.cpend
|| source[state.cp] == '|'
|| (state.parenNesting != 0 && source[state.cp] == ')')) {
if (headTerm == null) {
state.result = new RENode(REOP_EMPTY);
} else state.result = headTerm;
return true;
}
if (!parseTerm(state)) return false;
if (headTerm == null) {
headTerm = state.result;
tailTerm = headTerm;
} else tailTerm.next = state.result;
while (tailTerm.next != null) tailTerm = tailTerm.next;
}
}
/* calculate the total size of the bitmap required for a class expression */
private static boolean calculateBitmapSize(
CompilerState state, RENode target, char[] src, int index, int end) {
char rangeStart = 0;
char c;
int n;
int nDigits;
int i;
int max = 0;
boolean inRange = false;
target.bmsize = 0;
target.sense = true;
if (index == end) return true;
if (src[index] == '^') {
++index;
target.sense = false;
}
while (index != end) {
int localMax = 0;
nDigits = 2;
switch (src[index]) {
case '\\':
++index;
c = src[index++];
switch (c) {
case 'b':
localMax = 0x8;
break;
case 'f':
localMax = 0xC;
break;
case 'n':
localMax = 0xA;
break;
case 'r':
localMax = 0xD;
break;
case 't':
localMax = 0x9;
break;
case 'v':
localMax = 0xB;
break;
case 'c':
if ((index < end) && isControlLetter(src[index]))
localMax = (char) (src[index++] & 0x1F);
else --index;
localMax = '\\';
break;
case 'u':
nDigits += 2;
// fall through
case 'x':
n = 0;
for (i = 0; (i < nDigits) && (index < end); i++) {
c = src[index++];
n = Kit.xDigitToInt(c, n);
if (n < 0) {
// Back off to accepting the original
// '\' as a literal
index -= (i + 1);
n = '\\';
break;
}
}
localMax = n;
break;
case 'd':
if (inRange) {
target.bmsize = 65536;
return true;
}
localMax = '9';
break;
case 'D':
case 'w':
case 'W':
case 'S':
case 's':
target.bmsize = 65536;
return true;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
/*
* This is a non-ECMA extension - decimal escapes (in this
* case, octal!) are supposed to be an error inside class
* ranges, but supported here for backwards compatibility.
*
*/
n = (c - '0');
c = src[index];
if ('0' <= c && c <= '7') {
index++;
n = 8 * n + (c - '0');
c = src[index];
if ('0' <= c && c <= '7') {
index++;
i = 8 * n + (c - '0');
if (i <= 0377) n = i;
else index--;
}
}
localMax = n;
break;
default:
localMax = c;
break;
}
break;
default:
localMax = src[index++];
break;
}
if (inRange) {
if (rangeStart > localMax) {
reportError("msg.bad.range", "");
return false;
}
inRange = false;
} else {
if (index < (end - 1)) {
if (src[index] == '-') {
++index;
inRange = true;
rangeStart = (char) localMax;
continue;
}
}
}
if ((state.flags & JSREG_FOLD) != 0) {
char cu = upcase((char) localMax);
char cd = downcase((char) localMax);
localMax = (cu >= cd) ? cu : cd;
}
if (localMax > max) max = localMax;
}
target.bmsize = max + 1;
return true;
}
/*
* item: assertion An item is either an assertion or
* quantatom a quantified atom.
*
* assertion: '^' Assertions match beginning of string
* (or line if the class static property
* RegExp.multiline is true).
* '$' End of string (or line if the class
* static property RegExp.multiline is
* true).
* '\b' Word boundary (between \w and \W).
* '\B' Word non-boundary.
*
* quantatom: atom An unquantified atom.
* quantatom '{' n ',' m '}'
* Atom must occur between n and m times.
* quantatom '{' n ',' '}' Atom must occur at least n times.
* quantatom '{' n '}' Atom must occur exactly n times.
* quantatom '*' Zero or more times (same as {0,}).
* quantatom '+' One or more times (same as {1,}).
* quantatom '?' Zero or one time (same as {0,1}).
*
* any of which can be optionally followed by '?' for ungreedy
*
* atom: '(' regexp ')' A parenthesized regexp (what matched
* can be addressed using a backreference,
* see '\' n below).
* '.' Matches any char except '\n'.
* '[' classlist ']' A character class.
* '[' '^' classlist ']' A negated character class.
* '\f' Form Feed.
* '\n' Newline (Line Feed).
* '\r' Carriage Return.
* '\t' Horizontal Tab.
* '\v' Vertical Tab.
* '\d' A digit (same as [0-9]).
* '\D' A non-digit.
* '\w' A word character, [0-9a-z_A-Z].
* '\W' A non-word character.
* '\s' A whitespace character, [ \b\f\n\r\t\v].
* '\S' A non-whitespace character.
* '\' n A backreference to the nth (n decimal
* and positive) parenthesized expression.
* '\' octal An octal escape sequence (octal must be
* two or three digits long, unless it is
* 0 for the null character).
* '\x' hex A hex escape (hex must be two digits).
* '\c' ctrl A control character, ctrl is a letter.
* '\' literalatomchar Any character except one of the above
* that follow '\' in an atom.
* otheratomchar Any character not first among the other
* atom right-hand sides.
*/
private static void doFlat(CompilerState state, char c) {
state.result = new RENode(REOP_FLAT);
state.result.chr = c;
state.result.length = 1;
state.result.flatIndex = -1;
state.progLength += 3;
}
private static int getDecimalValue(
char c, CompilerState state, int maxValue, String overflowMessageId) {
boolean overflow = false;
int start = state.cp;
char[] src = state.cpbegin;
int value = c - '0';
for (; state.cp != state.cpend; ++state.cp) {
c = src[state.cp];
if (!isDigit(c)) {
break;
}
if (!overflow) {
int v = value * 10 + (c - '0');
if (v < maxValue) {
value = v;
} else {
overflow = true;
value = maxValue;
}
}
}
if (overflow) {
reportError(overflowMessageId, String.valueOf(src, start, state.cp - start));
}
return value;
}
private static boolean parseTerm(CompilerState state) {
char[] src = state.cpbegin;
char c = src[state.cp++];
int nDigits = 2;
int parenBaseCount = state.parenCount;
int num;
RENode term;
int termStart;
switch (c) {
/* assertions and atoms */
case '^':
state.result = new RENode(REOP_BOL);
state.progLength++;
return true;
case '$':
state.result = new RENode(REOP_EOL);
state.progLength++;
return true;
case '\\':
if (state.cp < state.cpend) {
c = src[state.cp++];
switch (c) {
/* assertion escapes */
case 'b':
state.result = new RENode(REOP_WBDRY);
state.progLength++;
return true;
case 'B':
state.result = new RENode(REOP_WNONBDRY);
state.progLength++;
return true;
/* Decimal escape */
case '0':
/*
* We're deliberately violating the ECMA 5.1 specification and allow octal
* escapes to follow spidermonkey and general 'web reality':
* http://wiki.ecmascript.org/doku.php?id=harmony:regexp_match_web_reality
* http://wiki.ecmascript.org/doku.php?id=strawman:match_web_reality_spec
*/
reportWarning(state.cx, "msg.bad.backref", "");
/* octal escape */
num = 0;
// follow spidermonkey and allow multiple leading zeros,
// e.g. let /\0000/ match the string "\0"
while (num < 040 && state.cp < state.cpend) {
c = src[state.cp];
if ((c >= '0') && (c <= '7')) {
state.cp++;
num = 8 * num + (c - '0');
} else break;
}
c = (char) (num);
doFlat(state, c);
break;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
termStart = state.cp - 1;
num = getDecimalValue(c, state, 0xFFFF, "msg.overlarge.backref");
if (num > state.backReferenceLimit)
reportWarning(state.cx, "msg.bad.backref", "");
/*
* n > count of parentheses, then treat as octal instead.
* Also see note above concerning 'web reality'
*/
if (num > state.backReferenceLimit) {
state.cp = termStart;
if (c >= '8') {
// invalid octal escape, follow spidermonkey and
// treat as \\8 resp. \\9
c = '\\';
doFlat(state, c);
break;
}
state.cp++;
num = c - '0';
while (num < 040 && state.cp < state.cpend) {
c = src[state.cp];
if ((c >= '0') && (c <= '7')) {
state.cp++;
num = 8 * num + (c - '0');
} else break;
}
c = (char) (num);
doFlat(state, c);
break;
}
/* otherwise, it's a back-reference */
state.result = new RENode(REOP_BACKREF);
state.result.parenIndex = num - 1;
state.progLength += 3;
if (state.maxBackReference < num) {
state.maxBackReference = num;
}
break;
/* Control escape */
case 'f':
c = 0xC;
doFlat(state, c);
break;
case 'n':
c = 0xA;
doFlat(state, c);
break;
case 'r':
c = 0xD;
doFlat(state, c);
break;
case 't':
c = 0x9;
doFlat(state, c);
break;
case 'v':
c = 0xB;
doFlat(state, c);
break;
/* Control letter */
case 'c':
if ((state.cp < state.cpend) && isControlLetter(src[state.cp]))
c = (char) (src[state.cp++] & 0x1F);
else {
/* back off to accepting the original '\' as a literal */
--state.cp;
c = '\\';
}
doFlat(state, c);
break;
/* UnicodeEscapeSequence */
case 'u':
nDigits += 2;
/* fall through */ case 'x': /* HexEscapeSequence */
{
int n = 0;
int i;
for (i = 0; (i < nDigits) && (state.cp < state.cpend); i++) {
c = src[state.cp++];
n = Kit.xDigitToInt(c, n);
if (n < 0) {
// Back off to accepting the original
// 'u' or 'x' as a literal
state.cp -= (i + 2);
n = src[state.cp++];
break;
}
}
c = (char) (n);
}
doFlat(state, c);
break;
/* Character class escapes */
case 'd':
state.result = new RENode(REOP_DIGIT);
state.progLength++;
break;
case 'D':
state.result = new RENode(REOP_NONDIGIT);
state.progLength++;
break;
case 's':
state.result = new RENode(REOP_SPACE);
state.progLength++;
break;
case 'S':
state.result = new RENode(REOP_NONSPACE);
state.progLength++;
break;
case 'w':
state.result = new RENode(REOP_ALNUM);
state.progLength++;
break;
case 'W':
state.result = new RENode(REOP_NONALNUM);
state.progLength++;
break;
/* IdentityEscape */
default:
state.result = new RENode(REOP_FLAT);
state.result.chr = c;
state.result.length = 1;
state.result.flatIndex = state.cp - 1;
state.progLength += 3;
break;
}
break;
}
/* a trailing '\' is an error */
reportError("msg.trail.backslash", "");
return false;
case '(':
{
RENode result = null;
termStart = state.cp;
if (state.cp + 1 < state.cpend
&& src[state.cp] == '?'
&& ((c = src[state.cp + 1]) == '=' || c == '!' || c == ':')) {
state.cp += 2;
if (c == '=') {
result = new RENode(REOP_ASSERT);
/* ASSERT, , ... ASSERTTEST */
state.progLength += 4;
} else if (c == '!') {
result = new RENode(REOP_ASSERT_NOT);
/* ASSERTNOT, , ... ASSERTNOTTEST */
state.progLength += 4;
}
} else {
result = new RENode(REOP_LPAREN);
/* LPAREN, , ... RPAREN, */
state.progLength += 6;
result.parenIndex = state.parenCount++;
}
++state.parenNesting;
if (!parseDisjunction(state)) return false;
if (state.cp == state.cpend || src[state.cp] != ')') {
reportError("msg.unterm.paren", "");
return false;
}
++state.cp;
--state.parenNesting;
if (result != null) {
result.kid = state.result;
state.result = result;
}
break;
}
case ')':
reportError("msg.re.unmatched.right.paren", "");
return false;
case '[':
state.result = new RENode(REOP_CLASS);
termStart = state.cp;
state.result.startIndex = termStart;
while (true) {
if (state.cp == state.cpend) {
reportError("msg.unterm.class", "");
return false;
}
if (src[state.cp] == '\\') state.cp++;
else {
if (src[state.cp] == ']') {
state.result.kidlen = state.cp - termStart;
break;
}
}
state.cp++;
}
state.result.index = state.classCount++;
/*
* Call calculateBitmapSize now as we want any errors it finds
* to be reported during the parse phase, not at execution.
*/
if (!calculateBitmapSize(state, state.result, src, termStart, state.cp++))
return false;
state.progLength += 3; /* CLASS, */
break;
case '.':
state.result = new RENode(REOP_DOT);
state.progLength++;
break;
case '*':
case '+':
case '?':
reportError("msg.bad.quant", String.valueOf(src[state.cp - 1]));
return false;
default:
state.result = new RENode(REOP_FLAT);
state.result.chr = c;
state.result.length = 1;
state.result.flatIndex = state.cp - 1;
state.progLength += 3;
break;
}
term = state.result;
if (state.cp == state.cpend) {
return true;
}
boolean hasQ = false;
switch (src[state.cp]) {
case '+':
state.result = new RENode(REOP_QUANT);
state.result.min = 1;
state.result.max = -1;
/* , , , ... */
state.progLength += 8;
hasQ = true;
break;
case '*':
state.result = new RENode(REOP_QUANT);
state.result.min = 0;
state.result.max = -1;
/* , , , ... */
state.progLength += 8;
hasQ = true;
break;
case '?':
state.result = new RENode(REOP_QUANT);
state.result.min = 0;
state.result.max = 1;
/* , , , ... */
state.progLength += 8;
hasQ = true;
break;
case '{': /* balance '}' */
{
int min = 0;
int max = -1;
int leftCurl = state.cp;
/* For Perl etc. compatibility, if quantifier does not match
* \{\d+(,\d*)?\} exactly back off from it
* being a quantifier, and chew it up as a literal
* atom next time instead.
*/
if (++state.cp < src.length && isDigit(c = src[state.cp])) {
++state.cp;
min = getDecimalValue(c, state, 0xFFFF, "msg.overlarge.min");
if (state.cp < src.length) {
c = src[state.cp];
if (c == ',' && ++state.cp < src.length) {
c = src[state.cp];
if (isDigit(c) && ++state.cp < src.length) {
max = getDecimalValue(c, state, 0xFFFF, "msg.overlarge.max");
c = src[state.cp];
if (min > max) {
String msg =
ScriptRuntime.getMessageById(
"msg.max.lt.min",
Integer.valueOf(max),
Integer.valueOf(min));
throw ScriptRuntime.constructError("SyntaxError", msg);
}
}
} else {
max = min;
}
/* balance '{' */
if (c == '}') {
state.result = new RENode(REOP_QUANT);
state.result.min = min;
state.result.max = max;
// QUANT, , , ,
// , ...
state.progLength += 12;
hasQ = true;
}
}
}
if (!hasQ) {
state.cp = leftCurl;
}
break;
}
}
if (!hasQ) return true;
++state.cp;
state.result.kid = term;
state.result.parenIndex = parenBaseCount;
state.result.parenCount = state.parenCount - parenBaseCount;
if ((state.cp < state.cpend) && (src[state.cp] == '?')) {
++state.cp;
state.result.greedy = false;
} else state.result.greedy = true;
return true;
}
private static void resolveForwardJump(byte[] array, int from, int pc) {
if (from > pc) throw Kit.codeBug();
addIndex(array, from, pc - from);
}
private static int getOffset(byte[] array, int pc) {
return getIndex(array, pc);
}
private static int addIndex(byte[] array, int pc, int index) {
if (index < 0) throw Kit.codeBug();
if (index > 0xFFFF) throw Context.reportRuntimeError("Too complex regexp");
array[pc] = (byte) (index >> 8);
array[pc + 1] = (byte) (index);
return pc + 2;
}
private static int getIndex(byte[] array, int pc) {
return ((array[pc] & 0xFF) << 8) | (array[pc + 1] & 0xFF);
}
private static final int INDEX_LEN = 2;
private static int emitREBytecode(CompilerState state, RECompiled re, int pc, RENode t) {
RENode nextAlt;
int nextAltFixup, nextTermFixup;
byte[] program = re.program;
while (t != null) {
program[pc++] = t.op;
switch (t.op) {
case REOP_EMPTY:
--pc;
break;
case REOP_ALTPREREQ:
case REOP_ALTPREREQi:
case REOP_ALTPREREQ2:
boolean ignoreCase = t.op == REOP_ALTPREREQi;
addIndex(program, pc, ignoreCase ? upcase(t.chr) : t.chr);
pc += INDEX_LEN;
addIndex(program, pc, ignoreCase ? upcase((char) t.index) : t.index);
pc += INDEX_LEN;
// fall through to REOP_ALT
case REOP_ALT:
nextAlt = t.kid2;
nextAltFixup = pc; /* address of next alternate */
pc += INDEX_LEN;
pc = emitREBytecode(state, re, pc, t.kid);
program[pc++] = REOP_JUMP;
nextTermFixup = pc; /* address of following term */
pc += INDEX_LEN;
resolveForwardJump(program, nextAltFixup, pc);
pc = emitREBytecode(state, re, pc, nextAlt);
program[pc++] = REOP_JUMP;
nextAltFixup = pc;
pc += INDEX_LEN;
resolveForwardJump(program, nextTermFixup, pc);
resolveForwardJump(program, nextAltFixup, pc);
break;
case REOP_FLAT:
/*
* Consecutize FLAT's if possible.
*/
if (t.flatIndex != -1) {
while ((t.next != null)
&& (t.next.op == REOP_FLAT)
&& ((t.flatIndex + t.length) == t.next.flatIndex)) {
t.length += t.next.length;
t.next = t.next.next;
}
}
if ((t.flatIndex != -1) && (t.length > 1)) {
if ((state.flags & JSREG_FOLD) != 0) program[pc - 1] = REOP_FLATi;
else program[pc - 1] = REOP_FLAT;
pc = addIndex(program, pc, t.flatIndex);
pc = addIndex(program, pc, t.length);
} else {
if (t.chr < 256) {
if ((state.flags & JSREG_FOLD) != 0) program[pc - 1] = REOP_FLAT1i;
else program[pc - 1] = REOP_FLAT1;
program[pc++] = (byte) (t.chr);
} else {
if ((state.flags & JSREG_FOLD) != 0) program[pc - 1] = REOP_UCFLAT1i;
else program[pc - 1] = REOP_UCFLAT1;
pc = addIndex(program, pc, t.chr);
}
}
break;
case REOP_LPAREN:
pc = addIndex(program, pc, t.parenIndex);
pc = emitREBytecode(state, re, pc, t.kid);
program[pc++] = REOP_RPAREN;
pc = addIndex(program, pc, t.parenIndex);
break;
case REOP_BACKREF:
pc = addIndex(program, pc, t.parenIndex);
break;
case REOP_ASSERT:
nextTermFixup = pc;
pc += INDEX_LEN;
pc = emitREBytecode(state, re, pc, t.kid);
program[pc++] = REOP_ASSERTTEST;
resolveForwardJump(program, nextTermFixup, pc);
break;
case REOP_ASSERT_NOT:
nextTermFixup = pc;
pc += INDEX_LEN;
pc = emitREBytecode(state, re, pc, t.kid);
program[pc++] = REOP_ASSERTNOTTEST;
resolveForwardJump(program, nextTermFixup, pc);
break;
case REOP_QUANT:
if ((t.min == 0) && (t.max == -1))
program[pc - 1] = (t.greedy) ? REOP_STAR : REOP_MINIMALSTAR;
else if ((t.min == 0) && (t.max == 1))
program[pc - 1] = (t.greedy) ? REOP_OPT : REOP_MINIMALOPT;
else if ((t.min == 1) && (t.max == -1))
program[pc - 1] = (t.greedy) ? REOP_PLUS : REOP_MINIMALPLUS;
else {
if (!t.greedy) program[pc - 1] = REOP_MINIMALQUANT;
pc = addIndex(program, pc, t.min);
// max can be -1 which addIndex does not accept
pc = addIndex(program, pc, t.max + 1);
}
pc = addIndex(program, pc, t.parenCount);
pc = addIndex(program, pc, t.parenIndex);
nextTermFixup = pc;
pc += INDEX_LEN;
pc = emitREBytecode(state, re, pc, t.kid);
program[pc++] = REOP_ENDCHILD;
resolveForwardJump(program, nextTermFixup, pc);
break;
case REOP_CLASS:
if (!t.sense) program[pc - 1] = REOP_NCLASS;
pc = addIndex(program, pc, t.index);
re.classList[t.index] =
new RECharSet(
t.bmsize, t.startIndex,
t.kidlen, t.sense);
break;
default:
break;
}
t = t.next;
}
return pc;
}
private static void pushProgState(
REGlobalData gData,
int min,
int max,
int cp,
REBackTrackData backTrackLastToSave,
int continuationOp,
int continuationPc) {
gData.stateStackTop =
new REProgState(
gData.stateStackTop,
min,
max,
cp,
backTrackLastToSave,
continuationOp,
continuationPc);
}
private static REProgState popProgState(REGlobalData gData) {
REProgState state = gData.stateStackTop;
gData.stateStackTop = state.previous;
return state;
}
private static void pushBackTrackState(REGlobalData gData, byte op, int pc) {
REProgState state = gData.stateStackTop;
gData.backTrackStackTop =
new REBackTrackData(
gData, op, pc, gData.cp, state.continuationOp, state.continuationPc);
}
private static void pushBackTrackState(
REGlobalData gData, byte op, int pc, int cp, int continuationOp, int continuationPc) {
gData.backTrackStackTop =
new REBackTrackData(gData, op, pc, cp, continuationOp, continuationPc);
}
/*
* Consecutive literal characters.
*/
private static boolean flatNMatcher(
REGlobalData gData, int matchChars, int length, String input, int end) {
if ((gData.cp + length) > end) return false;
for (int i = 0; i < length; i++) {
if (gData.regexp.source[matchChars + i] != input.charAt(gData.cp + i)) {
return false;
}
}
gData.cp += length;
return true;
}
private static boolean flatNIMatcher(
REGlobalData gData, int matchChars, int length, String input, int end) {
if ((gData.cp + length) > end) return false;
char[] source = gData.regexp.source;
for (int i = 0; i < length; i++) {
char c1 = source[matchChars + i];
char c2 = input.charAt(gData.cp + i);
if (c1 != c2 && upcase(c1) != upcase(c2)) {
return false;
}
}
gData.cp += length;
return true;
}
/*
1. Evaluate DecimalEscape to obtain an EscapeValue E.
2. If E is not a character then go to step 6.
3. Let ch be E's character.
4. Let A be a one-element RECharSet containing the character ch.
5. Call CharacterSetMatcher(A, false) and return its Matcher result.
6. E must be an integer. Let n be that integer.
7. If n=0 or n>NCapturingParens then throw a SyntaxError exception.
8. Return an internal Matcher closure that takes two arguments, a State x
and a Continuation c, and performs the following:
1. Let cap be x's captures internal array.
2. Let s be cap[n].
3. If s is undefined, then call c(x) and return its result.
4. Let e be x's endIndex.
5. Let len be s's length.
6. Let f be e+len.
7. If f>InputLength, return failure.
8. If there exists an integer i between 0 (inclusive) and len (exclusive)
such that Canonicalize(s[i]) is not the same character as
Canonicalize(Input [e+i]), then return failure.
9. Let y be the State (f, cap).
10. Call c(y) and return its result.
*/
private static boolean backrefMatcher(
REGlobalData gData, int parenIndex, String input, int end) {
int len;
int i;
if (gData.parens == null || parenIndex >= gData.parens.length) return false;
int parenContent = gData.parensIndex(parenIndex);
if (parenContent == -1) return true;
len = gData.parensLength(parenIndex);
if ((gData.cp + len) > end) return false;
if ((gData.regexp.flags & JSREG_FOLD) != 0) {
for (i = 0; i < len; i++) {
char c1 = input.charAt(parenContent + i);
char c2 = input.charAt(gData.cp + i);
if (c1 != c2 && upcase(c1) != upcase(c2)) return false;
}
} else if (!input.regionMatches(parenContent, input, gData.cp, len)) {
return false;
}
gData.cp += len;
return true;
}
/* Add a single character to the RECharSet */
private static void addCharacterToCharSet(RECharSet cs, char c) {
int byteIndex = (c / 8);
if (c >= cs.length) {
throw ScriptRuntime.constructError("SyntaxError", "invalid range in character class");
}
cs.bits[byteIndex] |= 1 << (c & 0x7);
}
/* Add a character range, c1 to c2 (inclusive) to the RECharSet */
private static void addCharacterRangeToCharSet(RECharSet cs, char c1, char c2) {
int i;
int byteIndex1 = (c1 / 8);
int byteIndex2 = (c2 / 8);
if ((c2 >= cs.length) || (c1 > c2)) {
throw ScriptRuntime.constructError("SyntaxError", "invalid range in character class");
}
c1 &= 0x7;
c2 &= 0x7;
if (byteIndex1 == byteIndex2) {
cs.bits[byteIndex1] |= ((0xFF) >> (7 - (c2 - c1))) << c1;
} else {
cs.bits[byteIndex1] |= 0xFF << c1;
for (i = byteIndex1 + 1; i < byteIndex2; i++) cs.bits[i] = (byte) 0xFF;
cs.bits[byteIndex2] |= (0xFF) >> (7 - c2);
}
}
/* Compile the source of the class into a RECharSet */
private static void processCharSet(REGlobalData gData, RECharSet charSet) {
synchronized (charSet) {
if (!charSet.converted) {
processCharSetImpl(gData, charSet);
charSet.converted = true;
}
}
}
private static void processCharSetImpl(REGlobalData gData, RECharSet charSet) {
int src = charSet.startIndex;
int end = src + charSet.strlength;
char rangeStart = 0, thisCh;
int byteLength;
char c;
int n;
int nDigits;
int i;
boolean inRange = false;
byteLength = (charSet.length + 7) / 8;
charSet.bits = new byte[byteLength];
if (src == end) return;
if (gData.regexp.source[src] == '^') {
assert (!charSet.sense);
++src;
} else {
assert (charSet.sense);
}
while (src != end) {
nDigits = 2;
switch (gData.regexp.source[src]) {
case '\\':
++src;
c = gData.regexp.source[src++];
switch (c) {
case 'b':
thisCh = 0x8;
break;
case 'f':
thisCh = 0xC;
break;
case 'n':
thisCh = 0xA;
break;
case 'r':
thisCh = 0xD;
break;
case 't':
thisCh = 0x9;
break;
case 'v':
thisCh = 0xB;
break;
case 'c':
if ((src < end) && isControlLetter(gData.regexp.source[src]))
thisCh = (char) (gData.regexp.source[src++] & 0x1F);
else {
--src;
thisCh = '\\';
}
break;
case 'u':
nDigits += 2;
// fall through
case 'x':
n = 0;
for (i = 0; (i < nDigits) && (src < end); i++) {
c = gData.regexp.source[src++];
int digit = toASCIIHexDigit(c);
if (digit < 0) {
/* back off to accepting the original '\'
* as a literal
*/
src -= (i + 1);
n = '\\';
break;
}
n = (n << 4) | digit;
}
thisCh = (char) (n);
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
/*
* This is a non-ECMA extension - decimal escapes (in this
* case, octal!) are supposed to be an error inside class
* ranges, but supported here for backwards compatibility.
*
*/
n = (c - '0');
c = gData.regexp.source[src];
if ('0' <= c && c <= '7') {
src++;
n = 8 * n + (c - '0');
c = gData.regexp.source[src];
if ('0' <= c && c <= '7') {
src++;
i = 8 * n + (c - '0');
if (i <= 0377) n = i;
else src--;
}
}
thisCh = (char) (n);
break;
case 'd':
if (inRange) {
addCharacterToCharSet(charSet, '-');
inRange = false;
}
addCharacterRangeToCharSet(charSet, '0', '9');
continue; /* don't need range processing */
case 'D':
if (inRange) {
addCharacterToCharSet(charSet, '-');
inRange = false;
}
addCharacterRangeToCharSet(charSet, (char) 0, (char) ('0' - 1));
addCharacterRangeToCharSet(
charSet, (char) ('9' + 1), (char) (charSet.length - 1));
continue;
case 's':
if (inRange) {
addCharacterToCharSet(charSet, '-');
inRange = false;
}
for (i = (charSet.length - 1); i >= 0; i--)
if (isREWhiteSpace(i)) addCharacterToCharSet(charSet, (char) (i));
continue;
case 'S':
if (inRange) {
addCharacterToCharSet(charSet, '-');
inRange = false;
}
for (i = (charSet.length - 1); i >= 0; i--)
if (!isREWhiteSpace(i)) addCharacterToCharSet(charSet, (char) (i));
continue;
case 'w':
if (inRange) {
addCharacterToCharSet(charSet, '-');
inRange = false;
}
for (i = (charSet.length - 1); i >= 0; i--)
if (isWord((char) i)) addCharacterToCharSet(charSet, (char) (i));
continue;
case 'W':
if (inRange) {
addCharacterToCharSet(charSet, '-');
inRange = false;
}
for (i = (charSet.length - 1); i >= 0; i--)
if (!isWord((char) i)) addCharacterToCharSet(charSet, (char) (i));
continue;
default:
thisCh = c;
break;
}
break;
default:
thisCh = gData.regexp.source[src++];
break;
}
if (inRange) {
if ((gData.regexp.flags & JSREG_FOLD) != 0) {
assert (rangeStart <= thisCh);
for (c = rangeStart; c <= thisCh; ) {
addCharacterToCharSet(charSet, c);
char uch = upcase(c);
char dch = downcase(c);
if (c != uch) addCharacterToCharSet(charSet, uch);
if (c != dch) addCharacterToCharSet(charSet, dch);
if (++c == 0) break; // overflow
}
} else {
addCharacterRangeToCharSet(charSet, rangeStart, thisCh);
}
inRange = false;
} else {
if ((gData.regexp.flags & JSREG_FOLD) != 0) {
addCharacterToCharSet(charSet, upcase(thisCh));
addCharacterToCharSet(charSet, downcase(thisCh));
} else {
addCharacterToCharSet(charSet, thisCh);
}
if (src < (end - 1)) {
if (gData.regexp.source[src] == '-') {
++src;
inRange = true;
rangeStart = thisCh;
}
}
}
}
}
/*
* Initialize the character set if it this is the first call.
* Test the bit - if the ^ flag was specified, non-inclusion is a success
*/
private static boolean classMatcher(REGlobalData gData, RECharSet charSet, char ch) {
if (!charSet.converted) {
processCharSet(gData, charSet);
}
int byteIndex = ch >> 3;
return (charSet.length == 0
|| ch >= charSet.length
|| (charSet.bits[byteIndex] & (1 << (ch & 0x7))) == 0)
^ charSet.sense;
}
private static boolean reopIsSimple(int op) {
return op >= REOP_SIMPLE_START && op <= REOP_SIMPLE_END;
}
/*
* Apply the current op against the given input to see if
* it's going to match or fail. Return false if we don't
* get a match, true if we do and update the state of the
* input and pc if the update flag is true.
*/
private static int simpleMatch(
REGlobalData gData,
String input,
int op,
byte[] program,
int pc,
int end,
boolean updatecp) {
boolean result = false;
char matchCh;
int parenIndex;
int offset, length, index;
int startcp = gData.cp;
switch (op) {
case REOP_EMPTY:
result = true;
break;
case REOP_BOL:
if (gData.cp != 0) {
if (!gData.multiline || !isLineTerm(input.charAt(gData.cp - 1))) {
break;
}
}
result = true;
break;
case REOP_EOL:
if (gData.cp != end) {
if (!gData.multiline || !isLineTerm(input.charAt(gData.cp))) {
break;
}
}
result = true;
break;
case REOP_WBDRY:
result =
((gData.cp == 0 || !isWord(input.charAt(gData.cp - 1)))
^ !((gData.cp < end) && isWord(input.charAt(gData.cp))));
break;
case REOP_WNONBDRY:
result =
((gData.cp == 0 || !isWord(input.charAt(gData.cp - 1)))
^ ((gData.cp < end) && isWord(input.charAt(gData.cp))));
break;
case REOP_DOT:
if (gData.cp != end
&& ((gData.regexp.flags & JSREG_DOTALL) != 0
|| !isLineTerm(input.charAt(gData.cp)))) {
result = true;
gData.cp++;
}
break;
case REOP_DIGIT:
if (gData.cp != end && isDigit(input.charAt(gData.cp))) {
result = true;
gData.cp++;
}
break;
case REOP_NONDIGIT:
if (gData.cp != end && !isDigit(input.charAt(gData.cp))) {
result = true;
gData.cp++;
}
break;
case REOP_ALNUM:
if (gData.cp != end && isWord(input.charAt(gData.cp))) {
result = true;
gData.cp++;
}
break;
case REOP_NONALNUM:
if (gData.cp != end && !isWord(input.charAt(gData.cp))) {
result = true;
gData.cp++;
}
break;
case REOP_SPACE:
if (gData.cp != end && isREWhiteSpace(input.charAt(gData.cp))) {
result = true;
gData.cp++;
}
break;
case REOP_NONSPACE:
if (gData.cp != end && !isREWhiteSpace(input.charAt(gData.cp))) {
result = true;
gData.cp++;
}
break;
case REOP_BACKREF:
{
parenIndex = getIndex(program, pc);
pc += INDEX_LEN;
result = backrefMatcher(gData, parenIndex, input, end);
}
break;
case REOP_FLAT:
{
offset = getIndex(program, pc);
pc += INDEX_LEN;
length = getIndex(program, pc);
pc += INDEX_LEN;
result = flatNMatcher(gData, offset, length, input, end);
}
break;
case REOP_FLAT1:
{
matchCh = (char) (program[pc++] & 0xFF);
if (gData.cp != end && input.charAt(gData.cp) == matchCh) {
result = true;
gData.cp++;
}
}
break;
case REOP_FLATi:
{
offset = getIndex(program, pc);
pc += INDEX_LEN;
length = getIndex(program, pc);
pc += INDEX_LEN;
result = flatNIMatcher(gData, offset, length, input, end);
}
break;
case REOP_FLAT1i:
{
matchCh = (char) (program[pc++] & 0xFF);
if (gData.cp != end) {
char c = input.charAt(gData.cp);
if (matchCh == c || upcase(matchCh) == upcase(c)) {
result = true;
gData.cp++;
}
}
}
break;
case REOP_UCFLAT1:
{
matchCh = (char) getIndex(program, pc);
pc += INDEX_LEN;
if (gData.cp != end && input.charAt(gData.cp) == matchCh) {
result = true;
gData.cp++;
}
}
break;
case REOP_UCFLAT1i:
{
matchCh = (char) getIndex(program, pc);
pc += INDEX_LEN;
if (gData.cp != end) {
char c = input.charAt(gData.cp);
if (matchCh == c || upcase(matchCh) == upcase(c)) {
result = true;
gData.cp++;
}
}
}
break;
case REOP_CLASS:
case REOP_NCLASS:
{
index = getIndex(program, pc);
pc += INDEX_LEN;
if (gData.cp != end) {
if (classMatcher(
gData, gData.regexp.classList[index], input.charAt(gData.cp))) {
gData.cp++;
result = true;
break;
}
}
}
break;
default:
throw Kit.codeBug();
}
if (result) {
if (!updatecp) gData.cp = startcp;
return pc;
}
gData.cp = startcp;
return -1;
}
private static boolean executeREBytecode(
Context cx, REGlobalData gData, String input, int end) {
int pc = 0;
byte[] program = gData.regexp.program;
int continuationOp = REOP_END;
int continuationPc = 0;
boolean result = false;
int op = program[pc++];
/*
* If the first node is a simple match, step the index into the string
* until that match is made, or fail if it can't be found at all.
*/
if (gData.regexp.anchorCh < 0 && reopIsSimple(op)) {
boolean anchor = false;
while (gData.cp <= end) {
int match = simpleMatch(gData, input, op, program, pc, end, true);
if (match >= 0) {
anchor = true;
pc = match; /* accept skip to next opcode */
op = program[pc++];
break;
}
gData.skipped++;
gData.cp++;
}
if (!anchor) return false;
}
for (; ; ) {
ScriptRuntime.addInstructionCount(cx, 5);
if (reopIsSimple(op)) {
int match = simpleMatch(gData, input, op, program, pc, end, true);
result = match >= 0;
if (result) pc = match; /* accept skip to next opcode */
} else {
switchStatement:
switch (op) {
case REOP_ALTPREREQ:
case REOP_ALTPREREQi:
case REOP_ALTPREREQ2:
{
char matchCh1 = (char) getIndex(program, pc);
pc += INDEX_LEN;
char matchCh2 = (char) getIndex(program, pc);
pc += INDEX_LEN;
if (gData.cp == end) {
result = false;
break;
}
char c = input.charAt(gData.cp);
if (op == REOP_ALTPREREQ2) {
if (c != matchCh1
&& !classMatcher(
gData, gData.regexp.classList[matchCh2], c)) {
result = false;
break;
}
} else {
if (op == REOP_ALTPREREQi) c = upcase(c);
if (c != matchCh1 && c != matchCh2) {
result = false;
break;
}
}
}
/* else false thru... */
// fall through
case REOP_ALT:
{
int nextpc = pc + getOffset(program, pc);
pc += INDEX_LEN;
op = program[pc++];
int startcp = gData.cp;
if (reopIsSimple(op)) {
int match = simpleMatch(gData, input, op, program, pc, end, true);
if (match < 0) {
op = program[nextpc++];
pc = nextpc;
continue;
}
result = true;
pc = match;
op = program[pc++];
}
byte nextop = program[nextpc++];
pushBackTrackState(
gData, nextop, nextpc, startcp, continuationOp, continuationPc);
}
continue;
case REOP_JUMP:
{
int offset = getOffset(program, pc);
pc += offset;
op = program[pc++];
}
continue;
case REOP_LPAREN:
{
int parenIndex = getIndex(program, pc);
pc += INDEX_LEN;
gData.setParens(parenIndex, gData.cp, 0);
op = program[pc++];
}
continue;
case REOP_RPAREN:
{
int parenIndex = getIndex(program, pc);
pc += INDEX_LEN;
int cap_index = gData.parensIndex(parenIndex);
gData.setParens(parenIndex, cap_index, gData.cp - cap_index);
op = program[pc++];
}
continue;
case REOP_ASSERT:
{
int nextpc =
pc + getIndex(program, pc); /* start of term after ASSERT */
pc += INDEX_LEN; /* start of ASSERT child */
op = program[pc++];
if (reopIsSimple(op)
&& simpleMatch(gData, input, op, program, pc, end, false) < 0) {
result = false;
break;
}
pushProgState(
gData,
0,
0,
gData.cp,
gData.backTrackStackTop,
continuationOp,
continuationPc);
pushBackTrackState(gData, REOP_ASSERTTEST, nextpc);
}
continue;
case REOP_ASSERT_NOT:
{
int nextpc =
pc + getIndex(program, pc); /* start of term after ASSERT */
pc += INDEX_LEN; /* start of ASSERT child */
op = program[pc++];
if (reopIsSimple(op)) {
int match = simpleMatch(gData, input, op, program, pc, end, false);
if (match >= 0 && program[match] == REOP_ASSERTNOTTEST) {
result = false;
break;
}
}
pushProgState(
gData,
0,
0,
gData.cp,
gData.backTrackStackTop,
continuationOp,
continuationPc);
pushBackTrackState(gData, REOP_ASSERTNOTTEST, nextpc);
}
continue;
case REOP_ASSERTTEST:
case REOP_ASSERTNOTTEST:
{
REProgState state = popProgState(gData);
gData.cp = state.index;
gData.backTrackStackTop = state.backTrack;
continuationPc = state.continuationPc;
continuationOp = state.continuationOp;
if (op == REOP_ASSERTNOTTEST) {
result = !result;
}
}
break;
case REOP_STAR:
case REOP_PLUS:
case REOP_OPT:
case REOP_QUANT:
case REOP_MINIMALSTAR:
case REOP_MINIMALPLUS:
case REOP_MINIMALOPT:
case REOP_MINIMALQUANT:
{
int min, max;
boolean greedy = false;
switch (op) {
case REOP_STAR:
greedy = true;
// fallthrough
case REOP_MINIMALSTAR:
min = 0;
max = -1;
break;
case REOP_PLUS:
greedy = true;
// fallthrough
case REOP_MINIMALPLUS:
min = 1;
max = -1;
break;
case REOP_OPT:
greedy = true;
// fallthrough
case REOP_MINIMALOPT:
min = 0;
max = 1;
break;
case REOP_QUANT:
greedy = true;
// fallthrough
case REOP_MINIMALQUANT:
min = getOffset(program, pc);
pc += INDEX_LEN;
// See comments in emitREBytecode for " - 1" reason
max = getOffset(program, pc) - 1;
pc += INDEX_LEN;
break;
default:
throw Kit.codeBug();
}
pushProgState(
gData,
min,
max,
gData.cp,
null,
continuationOp,
continuationPc);
if (greedy) {
pushBackTrackState(gData, REOP_REPEAT, pc);
continuationOp = REOP_REPEAT;
continuationPc = pc;
/* Step over , & */
pc += 3 * INDEX_LEN;
op = program[pc++];
} else {
if (min != 0) {
continuationOp = REOP_MINIMALREPEAT;
continuationPc = pc;
/* & */
pc += 3 * INDEX_LEN;
op = program[pc++];
} else {
pushBackTrackState(gData, REOP_MINIMALREPEAT, pc);
popProgState(gData);
pc += 2 * INDEX_LEN; // &
pc = pc + getOffset(program, pc);
op = program[pc++];
}
}
}
continue;
case REOP_ENDCHILD: /* marks the end of a quantifier child */
// If we have not gotten a result here, it is because of an
// empty match. Do the same thing REOP_EMPTY would do.
result = true;
// Use the current continuation.
pc = continuationPc;
op = continuationOp;
continue;
case REOP_REPEAT:
{
int nextpc, nextop;
do {
REProgState state = popProgState(gData);
if (!result) {
// Failed, see if we have enough children.
if (state.min == 0) result = true;
continuationPc = state.continuationPc;
continuationOp = state.continuationOp;
pc += 2 * INDEX_LEN; /* & */
pc += getOffset(program, pc);
break switchStatement;
}
if (state.min == 0 && (gData.cp == state.index || state.max == 0)) {
// matched an empty string or an {0} quantifier, that'll get us
// nowhere
result = false;
continuationPc = state.continuationPc;
continuationOp = state.continuationOp;
pc += 2 * INDEX_LEN;
pc += getOffset(program, pc);
break switchStatement;
}
int new_min = state.min, new_max = state.max;
if (new_min != 0) new_min--;
if (new_max != -1) new_max--;
if (new_max == 0) {
result = true;
continuationPc = state.continuationPc;
continuationOp = state.continuationOp;
pc += 2 * INDEX_LEN;
pc += getOffset(program, pc);
break switchStatement;
}
nextpc = pc + 3 * INDEX_LEN;
nextop = program[nextpc];
int startcp = gData.cp;
if (reopIsSimple(nextop)) {
nextpc++;
int match =
simpleMatch(
gData, input, nextop, program, nextpc, end,
true);
if (match < 0) {
result = (new_min == 0);
continuationPc = state.continuationPc;
continuationOp = state.continuationOp;
pc += 2 * INDEX_LEN; /* & */
pc += getOffset(program, pc);
break switchStatement;
}
result = true;
nextpc = match;
}
continuationOp = REOP_REPEAT;
continuationPc = pc;
pushProgState(
gData,
new_min,
new_max,
startcp,
null,
state.continuationOp,
state.continuationPc);
if (new_min == 0) {
pushBackTrackState(
gData,
REOP_REPEAT,
pc,
startcp,
state.continuationOp,
state.continuationPc);
int parenCount = getIndex(program, pc);
int parenIndex = getIndex(program, pc + INDEX_LEN);
for (int k = 0; k < parenCount; k++) {
gData.setParens(parenIndex + k, -1, 0);
}
}
} while (program[nextpc] == REOP_ENDCHILD);
pc = nextpc;
op = program[pc++];
}
continue;
case REOP_MINIMALREPEAT:
{
REProgState state = popProgState(gData);
if (!result) {
//
// Non-greedy failure - try to consume another child.
//
if (state.max == -1 || state.max > 0) {
pushProgState(
gData,
state.min,
state.max,
gData.cp,
null,
state.continuationOp,
state.continuationPc);
continuationOp = REOP_MINIMALREPEAT;
continuationPc = pc;
int parenCount = getIndex(program, pc);
pc += INDEX_LEN;
int parenIndex = getIndex(program, pc);
pc += 2 * INDEX_LEN;
for (int k = 0; k < parenCount; k++) {
gData.setParens(parenIndex + k, -1, 0);
}
op = program[pc++];
continue;
}
// Don't need to adjust pc since we're going to pop.
continuationPc = state.continuationPc;
continuationOp = state.continuationOp;
break;
}
if (state.min == 0 && gData.cp == state.index) {
// Matched an empty string, that'll get us nowhere.
result = false;
continuationPc = state.continuationPc;
continuationOp = state.continuationOp;
break;
}
int new_min = state.min, new_max = state.max;
if (new_min != 0) new_min--;
if (new_max != -1) new_max--;
pushProgState(
gData,
new_min,
new_max,
gData.cp,
null,
state.continuationOp,
state.continuationPc);
if (new_min != 0) {
continuationOp = REOP_MINIMALREPEAT;
continuationPc = pc;
int parenCount = getIndex(program, pc);
pc += INDEX_LEN;
int parenIndex = getIndex(program, pc);
pc += 2 * INDEX_LEN;
for (int k = 0; k < parenCount; k++) {
gData.setParens(parenIndex + k, -1, 0);
}
op = program[pc++];
} else {
continuationPc = state.continuationPc;
continuationOp = state.continuationOp;
pushBackTrackState(gData, REOP_MINIMALREPEAT, pc);
popProgState(gData);
pc += 2 * INDEX_LEN;
pc = pc + getOffset(program, pc);
op = program[pc++];
}
continue;
}
case REOP_END:
return true;
default:
throw Kit.codeBug("invalid bytecode");
}
}
/*
* If the match failed and there's a backtrack option, take it.
* Otherwise this is a complete and utter failure.
*/
if (!result) {
REBackTrackData backTrackData = gData.backTrackStackTop;
if (backTrackData != null) {
gData.backTrackStackTop = backTrackData.previous;
gData.parens = backTrackData.parens;
gData.cp = backTrackData.cp;
gData.stateStackTop = backTrackData.stateStackTop;
continuationOp = backTrackData.continuationOp;
continuationPc = backTrackData.continuationPc;
pc = backTrackData.pc;
op = backTrackData.op;
continue;
}
return false;
}
op = program[pc++];
}
}
private static boolean matchRegExp(
Context cx,
REGlobalData gData,
RECompiled re,
String input,
int start,
int end,
boolean multiline) {
if (re.parenCount != 0) {
gData.parens = new long[re.parenCount];
} else {
gData.parens = null;
}
gData.backTrackStackTop = null;
gData.stateStackTop = null;
gData.multiline = multiline || (re.flags & JSREG_MULTILINE) != 0;
gData.regexp = re;
int anchorCh = gData.regexp.anchorCh;
//
// have to include the position beyond the last character
// in order to detect end-of-input/line condition
//
for (int i = start; i <= end; ++i) {
//
// If the first node is a literal match, step the index into
// the string until that match is made, or fail if it can't be
// found at all.
//
if (anchorCh >= 0) {
for (; ; ) {
if (i == end) {
return false;
}
char matchCh = input.charAt(i);
if (matchCh == anchorCh
|| ((gData.regexp.flags & JSREG_FOLD) != 0
&& upcase(matchCh) == upcase((char) anchorCh))) {
break;
}
if ((gData.regexp.flags & JSREG_STICKY) != 0) {
return false;
}
++i;
}
}
gData.cp = i;
gData.skipped = i - start;
for (int j = 0; j < re.parenCount; j++) {
gData.parens[j] = -1L;
}
boolean result = executeREBytecode(cx, gData, input, end);
gData.backTrackStackTop = null;
gData.stateStackTop = null;
if (result) {
return true;
}
if (anchorCh == ANCHOR_BOL && !gData.multiline) {
gData.skipped = end;
return false;
}
if ((gData.regexp.flags & JSREG_STICKY) != 0) {
return false;
}
i = start + gData.skipped;
}
return false;
}
/*
* indexp is assumed to be an array of length 1
*/
Object executeRegExp(
Context cx, Scriptable scope, RegExpImpl res, String str, int[] indexp, int matchType) {
REGlobalData gData = new REGlobalData();
int start = indexp[0];
int end = str.length();
if (start > end) start = end;
//
// Call the recursive matcher to do the real work.
//
boolean matches = matchRegExp(cx, gData, re, str, start, end, res.multiline);
if (!matches) {
if (matchType != PREFIX) return null;
return Undefined.instance;
}
int index = gData.cp;
int ep = indexp[0] = index;
int matchlen = ep - (start + gData.skipped);
index -= matchlen;
Object result;
Scriptable obj;
if (matchType == TEST) {
/*
* Testing for a match and updating cx.regExpImpl: don't allocate
* an array object, do return true.
*/
result = Boolean.TRUE;
obj = null;
} else {
/*
* The array returned on match has element 0 bound to the matched
* string, elements 1 through re.parenCount bound to the paren
* matches, an index property telling the length of the left context,
* and an input property referring to the input string.
*/
result = cx.newArray(scope, 0);
obj = (Scriptable) result;
String matchstr = str.substring(index, index + matchlen);
obj.put(0, obj, matchstr);
}
if (re.parenCount == 0) {
res.parens = null;
res.lastParen = new SubString();
} else {
SubString parsub = null;
int num;
res.parens = new SubString[re.parenCount];
for (num = 0; num < re.parenCount; num++) {
int cap_index = gData.parensIndex(num);
if (cap_index != -1) {
int cap_length = gData.parensLength(num);
parsub = new SubString(str, cap_index, cap_length);
res.parens[num] = parsub;
if (matchType != TEST) obj.put(num + 1, obj, parsub.toString());
} else {
if (matchType != TEST) obj.put(num + 1, obj, Undefined.instance);
}
}
res.lastParen = parsub;
}
if (!(matchType == TEST)) {
/*
* Define the index and input properties last for better for/in loop
* order (so they come after the elements).
*/
obj.put("index", obj, Integer.valueOf(start + gData.skipped));
obj.put("input", obj, str);
}
if (res.lastMatch == null) {
res.lastMatch = new SubString();
res.leftContext = new SubString();
res.rightContext = new SubString();
}
res.lastMatch.str = str;
res.lastMatch.index = index;
res.lastMatch.length = matchlen;
res.leftContext.str = str;
if (cx.getLanguageVersion() == Context.VERSION_1_2) {
/*
* JS1.2 emulated Perl4.0.1.8 (patch level 36) for global regexps used
* in scalar contexts, and unintentionally for the string.match "list"
* psuedo-context. On "hi there bye", the following would result:
*
* Language while(/ /g){print("$`");} s/ /$`/g
* perl4.036 "hi", "there" "hihitherehi therebye"
* perl5 "hi", "hi there" "hihitherehi therebye"
* js1.2 "hi", "there" "hihitheretherebye"
*
* Insofar as JS1.2 always defined $` as "left context from the last
* match" for global regexps, it was more consistent than perl4.
*/
res.leftContext.index = start;
res.leftContext.length = gData.skipped;
} else {
/*
* For JS1.3 and ECMAv2, emulate Perl5 exactly:
*
* js1.3 "hi", "hi there" "hihitherehi therebye"
*/
res.leftContext.index = 0;
res.leftContext.length = start + gData.skipped;
}
res.rightContext.str = str;
res.rightContext.index = ep;
res.rightContext.length = end - ep;
return result;
}
int getFlags() {
return re.flags;
}
private static void reportWarning(Context cx, String messageId, String arg) {
if (cx.hasFeature(Context.FEATURE_STRICT_MODE)) {
String msg = ScriptRuntime.getMessageById(messageId, arg);
Context.reportWarning(msg);
}
}
private static void reportError(String messageId, String arg) {
String msg = ScriptRuntime.getMessageById(messageId, arg);
throw ScriptRuntime.constructError("SyntaxError", msg);
}
private static final int Id_lastIndex = 1,
Id_source = 2,
Id_flags = 3,
Id_global = 4,
Id_ignoreCase = 5,
Id_multiline = 6,
Id_dotAll = 7,
Id_sticky = 8,
MAX_INSTANCE_ID = 8;
@Override
protected int getMaxInstanceId() {
return MAX_INSTANCE_ID;
}
@Override
protected int findInstanceIdInfo(String s) {
int id;
switch (s) {
case "lastIndex":
id = Id_lastIndex;
break;
case "source":
id = Id_source;
break;
case "flags":
id = Id_flags;
break;
case "global":
id = Id_global;
break;
case "ignoreCase":
id = Id_ignoreCase;
break;
case "multiline":
id = Id_multiline;
break;
case "dotAll":
id = Id_dotAll;
break;
case "sticky":
id = Id_sticky;
break;
default:
id = 0;
break;
}
if (id == 0) return super.findInstanceIdInfo(s);
int attr;
switch (id) {
case Id_lastIndex:
attr = lastIndexAttr;
break;
case Id_source:
case Id_flags:
case Id_global:
case Id_ignoreCase:
case Id_multiline:
case Id_dotAll:
case Id_sticky:
attr = PERMANENT | READONLY | DONTENUM;
break;
default:
throw new IllegalStateException();
}
return instanceIdInfo(attr, id);
}
@Override
protected String getInstanceIdName(int id) {
switch (id) {
case Id_lastIndex:
return "lastIndex";
case Id_source:
return "source";
case Id_flags:
return "flags";
case Id_global:
return "global";
case Id_ignoreCase:
return "ignoreCase";
case Id_multiline:
return "multiline";
case Id_dotAll:
return "dotAll";
case Id_sticky:
return "sticky";
}
return super.getInstanceIdName(id);
}
@Override
protected Object getInstanceIdValue(int id) {
switch (id) {
case Id_lastIndex:
return lastIndex;
case Id_source:
return new String(re.source);
case Id_flags:
{
StringBuilder buf = new StringBuilder();
appendFlags(buf);
return buf.toString();
}
case Id_global:
return ScriptRuntime.wrapBoolean((re.flags & JSREG_GLOB) != 0);
case Id_ignoreCase:
return ScriptRuntime.wrapBoolean((re.flags & JSREG_FOLD) != 0);
case Id_multiline:
return ScriptRuntime.wrapBoolean((re.flags & JSREG_MULTILINE) != 0);
case Id_dotAll:
return ScriptRuntime.wrapBoolean((re.flags & JSREG_DOTALL) != 0);
case Id_sticky:
return ScriptRuntime.wrapBoolean((re.flags & JSREG_STICKY) != 0);
}
return super.getInstanceIdValue(id);
}
private void setLastIndex(Object value) {
if ((lastIndexAttr & READONLY) != 0) {
throw ScriptRuntime.typeErrorById("msg.modify.readonly", "lastIndex");
}
lastIndex = value;
}
@Override
protected void setInstanceIdValue(int id, Object value) {
switch (id) {
case Id_lastIndex:
setLastIndex(value);
return;
case Id_source:
case Id_flags:
case Id_global:
case Id_ignoreCase:
case Id_multiline:
case Id_dotAll:
case Id_sticky:
return;
}
super.setInstanceIdValue(id, value);
}
@Override
protected void setInstanceIdAttributes(int id, int attr) {
switch (id) {
case Id_lastIndex:
lastIndexAttr = attr;
return;
}
super.setInstanceIdAttributes(id, attr);
}
@Override
protected void initPrototypeId(int id) {
if (id == SymbolId_match) {
initPrototypeMethod(REGEXP_TAG, id, SymbolKey.MATCH, "[Symbol.match]", 1);
return;
}
if (id == SymbolId_search) {
initPrototypeMethod(REGEXP_TAG, id, SymbolKey.SEARCH, "[Symbol.search]", 1);
return;
}
String s;
int arity;
switch (id) {
case Id_compile:
arity = 2;
s = "compile";
break;
case Id_toString:
arity = 0;
s = "toString";
break;
case Id_toSource:
arity = 0;
s = "toSource";
break;
case Id_exec:
arity = 1;
s = "exec";
break;
case Id_test:
arity = 1;
s = "test";
break;
case Id_prefix:
arity = 1;
s = "prefix";
break;
default:
throw new IllegalArgumentException(String.valueOf(id));
}
initPrototypeMethod(REGEXP_TAG, id, s, arity);
}
@Override
public Object execIdCall(
IdFunctionObject f, Context cx, Scriptable scope, Scriptable thisObj, Object[] args) {
if (!f.hasTag(REGEXP_TAG)) {
return super.execIdCall(f, cx, scope, thisObj, args);
}
int id = f.methodId();
switch (id) {
case Id_compile:
return realThis(thisObj, f).compile(cx, scope, args);
case Id_toString:
// thisObj != scope is a strange hack but i had no better idea for the moment
if (thisObj != scope && thisObj instanceof NativeObject) {
Object sourceObj = thisObj.get("source", thisObj);
String source =
sourceObj.equals(NOT_FOUND) ? "undefined" : escapeRegExp(sourceObj);
Object flagsObj = thisObj.get("flags", thisObj);
String flags = flagsObj.equals(NOT_FOUND) ? "undefined" : flagsObj.toString();
return "/" + source + "/" + flags;
}
return realThis(thisObj, f).toString();
case Id_toSource:
return realThis(thisObj, f).toString();
case Id_exec:
return realThis(thisObj, f).execSub(cx, scope, args, MATCH);
case Id_test:
{
Object x = realThis(thisObj, f).execSub(cx, scope, args, TEST);
return Boolean.TRUE.equals(x) ? Boolean.TRUE : Boolean.FALSE;
}
case Id_prefix:
return realThis(thisObj, f).execSub(cx, scope, args, PREFIX);
case SymbolId_match:
return realThis(thisObj, f).execSub(cx, scope, args, MATCH);
case SymbolId_search:
Scriptable scriptable =
(Scriptable) realThis(thisObj, f).execSub(cx, scope, args, MATCH);
return scriptable == null ? -1 : scriptable.get("index", scriptable);
}
throw new IllegalArgumentException(String.valueOf(id));
}
private static NativeRegExp realThis(Scriptable thisObj, IdFunctionObject f) {
return ensureType(thisObj, NativeRegExp.class, f);
}
@Override
protected int findPrototypeId(Symbol k) {
if (SymbolKey.MATCH.equals(k)) {
return SymbolId_match;
}
if (SymbolKey.SEARCH.equals(k)) {
return SymbolId_search;
}
return 0;
}
@Override
protected int findPrototypeId(String s) {
int id;
switch (s) {
case "compile":
id = Id_compile;
break;
case "toString":
id = Id_toString;
break;
case "toSource":
id = Id_toSource;
break;
case "exec":
id = Id_exec;
break;
case "test":
id = Id_test;
break;
case "prefix":
id = Id_prefix;
break;
default:
id = 0;
break;
}
return id;
}
private static final int Id_compile = 1,
Id_toString = 2,
Id_toSource = 3,
Id_exec = 4,
Id_test = 5,
Id_prefix = 6,
SymbolId_match = 7,
SymbolId_search = 8,
MAX_PROTOTYPE_ID = SymbolId_search;
private RECompiled re;
Object lastIndex = ScriptRuntime.zeroObj; /* index after last match, for //g iterator */
private int lastIndexAttr = DONTENUM | PERMANENT;
} // class NativeRegExp
class RECompiled implements Serializable {
private static final long serialVersionUID = -6144956577595844213L;
final char[] source; /* locked source string, sans // */
int parenCount; /* number of parenthesized submatches */
int flags; /* flags */
byte[] program; /* regular expression bytecode */
int classCount; /* count [...] bitmaps */
RECharSet[] classList; /* list of [...] bitmaps */
int anchorCh = -1; /* if >= 0, then re starts with this literal char */
RECompiled(String str) {
this.source = str.toCharArray();
}
}
class RENode {
RENode(byte op) {
this.op = op;
}
byte op; /* r.e. op bytecode */
RENode next; /* next in concatenation order */
RENode kid; /* first operand */
RENode kid2; /* second operand */
int parenIndex; /* or a parenthesis index */
/* or a range */
int min;
int max;
int parenCount;
boolean greedy;
/* or a character class */
int startIndex;
int kidlen; /* length of string at kid, in chars */
int bmsize; /* bitmap size, based on max char code */
int index; /* index into class list */
boolean sense;
/* or a literal sequence */
char chr; /* of one character */
int length; /* or many (via the index) */
int flatIndex; /* which is -1 if not sourced */
}
class CompilerState {
CompilerState(Context cx, char[] source, int length, int flags) {
this.cx = cx;
this.cpbegin = source;
this.cp = 0;
this.cpend = length;
this.flags = flags;
this.backReferenceLimit = Integer.MAX_VALUE;
this.maxBackReference = 0;
this.parenCount = 0;
this.classCount = 0;
this.progLength = 0;
}
Context cx;
char[] cpbegin;
int cpend;
int cp;
int flags;
int backReferenceLimit;
int maxBackReference;
int parenCount;
int parenNesting;
int classCount; /* number of [] encountered */
int progLength; /* estimated bytecode length */
RENode result;
}
class REProgState {
REProgState(
REProgState previous,
int min,
int max,
int index,
REBackTrackData backTrack,
int continuationOp,
int continuationPc) {
this.previous = previous;
this.min = min;
this.max = max;
this.index = index;
this.continuationOp = continuationOp;
this.continuationPc = continuationPc;
this.backTrack = backTrack;
}
final REProgState previous; // previous state in stack
final int min; /* current quantifier min */
final int max; /* current quantifier max */
final int index; /* progress in text */
final int continuationOp;
final int continuationPc;
final REBackTrackData backTrack; // used by ASSERT_ to recover state
}
class REBackTrackData {
REBackTrackData(
REGlobalData gData, int op, int pc, int cp, int continuationOp, int continuationPc) {
previous = gData.backTrackStackTop;
this.op = op;
this.pc = pc;
this.cp = cp;
this.continuationOp = continuationOp;
this.continuationPc = continuationPc;
parens = gData.parens;
stateStackTop = gData.stateStackTop;
}
final REBackTrackData previous;
final int op; /* operator */
final int pc; /* bytecode pointer */
final int cp; /* char buffer index */
final int continuationOp; /* continuation op */
final int continuationPc; /* continuation pc */
final long[] parens; /* parenthesis captures */
final REProgState stateStackTop; /* state of op that backtracked */
}
class REGlobalData {
boolean multiline;
RECompiled regexp; /* the RE in execution */
int skipped; /* chars skipped anchoring this r.e. */
int cp; /* char buffer index */
long[] parens; /* parens captures */
REProgState stateStackTop; /* stack of state of current ancestors */
REBackTrackData backTrackStackTop; /* last matched-so-far position */
/** Get start of parenthesis capture contents, -1 for empty. */
int parensIndex(int i) {
return (int) (parens[i]);
}
/** Get length of parenthesis capture contents. */
int parensLength(int i) {
return (int) (parens[i] >>> 32);
}
void setParens(int i, int index, int length) {
// clone parens array if it is shared with backtrack state
if (backTrackStackTop != null && backTrackStackTop.parens == parens) {
parens = parens.clone();
}
parens[i] = (index & 0xffffffffL) | ((long) length << 32);
}
}
/*
* This struct holds a bitmap representation of a class from a regexp.
* There's a list of these referenced by the classList field in the NativeRegExp
* struct below. The initial state has startIndex set to the offset in the
* original regexp source of the beginning of the class contents. The first
* use of the class converts the source representation into a bitmap.
*
*/
final class RECharSet implements Serializable {
private static final long serialVersionUID = 7931787979395898394L;
RECharSet(int length, int startIndex, int strlength, boolean sense) {
this.length = length;
this.startIndex = startIndex;
this.strlength = strlength;
this.sense = sense;
}
final int length;
final int startIndex;
final int strlength;
final boolean sense;
transient volatile boolean converted;
transient volatile byte[] bits;
}