All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.n52.matlab.control.link.SparseArray Maven / Gradle / Ivy

The newest version!
package org.n52.matlab.control.link;

/*
 * Copyright (c) 2013, Joshua Kaplan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
 * following conditions are met:
 *  - Redistributions of source code must retain the above copyright notice, this list of conditions and the following
 *    disclaimer.
 *  - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
 *    following disclaimer in the documentation and/or other materials provided with the distribution.
 *  - Neither the name of matlabcontrol nor the names of its contributors may be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

/**
 * MATLAB sparse matrices are always two dimensional. This class models a two dimensional sparse array.
 *
 * @since 4.2.0
 * @author Joshua Kaplan
 * 
 * @param  underlying array of values - single dimensional array type, ex. {@code byte[]}
 */
class SparseArray extends BaseArray
{
    /**
     * The values in this array are the linear indices in the sparse array that have values. The index of an element
     * in this array maps to the index in {@link #_realValues} and {@link #_imagValues} that contain the value at the
     * linear index represented by the element as well as to the corresponding {@link #_rowIndices} and
     * {@link #_colIndices}. While the row and column indices can be calculated from these linear indices, these will
     * be needed as arrays in order to call MATLAB's {@code sparse} function.
     */
    private final int[] _linearIndices;
    
    /**
     * The row indices for the values represented by this sparse array.
     * 

* Corresponds to the {@code i} parameter of MATLAB's {@code sparse} function. */ private final int[] _rowIndices; /** * The column indices for the values represented by this sparse array. *

* Corresponds to the {@code j} parameter of MATLAB's {@code sparse} function. */ private final int[] _colIndices; /** * A single dimension array of real values. *

* Corresponds to the real value portion of the {@code s} parameter to MATLAB's {@code sparse} function. */ final L _realValues; /** * A single dimension array of imaginary values. Can be {@code null} if this sparse array is real. *

* Corresponds to the imaginary value portion of the {@code s} parameter to MATLAB's {@code sparse} function. */ final L _imagValues; /** * Caches the hash code. *

* To avoid any form of inter-thread communication this value may in the most degenerate case be recomputed for each * thread. */ private Integer _hashCode = null; /** * The primitive numeric type stored by the arrays. */ private final Class _baseComponentType; /** * Internal array type for storing the sparse values. */ private final Class _linearArrayType; /** * Output array type. */ private final Class _outputArrayType; private final int _numRows; private final int _numCols; /** * Data from MATLAB. Provided as the indices, linear arrays of values, and dimensions. The indices are expected to * be sorted in increasing value and the real and imaginary values are to correspond to these indices. * * @param linearArrayType * @param linearIndices need to be sorted in ascending value * @param realLinear * @param imagLinear * @param numRows * @param numCols */ SparseArray(Class linearArrayType, int[] linearIndices, int[] rowIndices, int[] colIndices, L real, L imag, int numRows, int numCols) { //Dimensions _numRows = numRows; _numCols = numCols; //Make class information at run time _baseComponentType = linearArrayType.getComponentType(); _linearArrayType = linearArrayType; _outputArrayType = (Class) ArrayUtils.getArrayClass(_baseComponentType, 2); //Indices _linearIndices = linearIndices; _rowIndices = rowIndices; _colIndices = colIndices; //The real and imaginary arrays should always be of type L, but validate it _realValues = linearArrayType.cast(real); _imagValues = linearArrayType.cast(imag); } /** * Data provided by a user; this data needs to be validated and processed. * * @param arrayType * @param rowIndices * @param colIndices * @param realValues * @param imagValues * @param numRows * @param numCols */ SparseArray(Class linearArrayType, int[] rowIndices, int[] colIndices, L realValues, L imagValues, int numRows, int numCols) { validateUserSuppliedParameters(linearArrayType, rowIndices, colIndices, realValues, imagValues); //Make class information at run time _baseComponentType = linearArrayType.getComponentType(); _linearArrayType = linearArrayType; _outputArrayType = (Class) ArrayUtils.getArrayClass(_baseComponentType, 2); //Construct a sparse mapping, sort by keys, and then set these values in to the indice and value arrays Map sparseMap = createSparseMap(linearArrayType, rowIndices, colIndices, realValues, imagValues, numRows, numCols); _numRows = numRows; _numCols = numCols; ArrayList keys = new ArrayList(sparseMap.keySet()); Collections.sort(keys); _rowIndices = new int[keys.size()]; _colIndices = new int[keys.size()]; _linearIndices = new int[keys.size()]; _realValues = linearArrayType.cast(Array.newInstance(_baseComponentType, keys.size())); _imagValues = imagValues == null ? null : linearArrayType.cast(Array.newInstance(_baseComponentType, keys.size())); for(int i = 0; i < keys.size(); i++) { SparseKey key = keys.get(i); _rowIndices[i] = key.row; _colIndices[i] = key.col; _linearIndices[i] = key.linearIndex; SparseValue value = sparseMap.get(key); setSparseValue(value, _realValues, _imagValues, i); } } @Override boolean isReal() { //For a sparse array, if there are no imaginary values then it is real. There is no need to check if all //entries of the imaginary array are zero as zero entries are not stored for sparse arrays. return (_imagValues == null); } @Override L[] toRealArray() { return sparseTo2DArray(_outputArrayType, _rowIndices, _colIndices, _realValues, _numRows, _numCols); } @Override L[] toImaginaryArray() { return sparseTo2DArray(_outputArrayType, _rowIndices, _colIndices, _imagValues, _numRows, _numCols); } private static L[] sparseTo2DArray(Class array2DType, int[] rowIndices, int[] colIndices, L values, int numRows, int numCols) { L[] array2D = (L[]) Array.newInstance(array2DType, numRows, numCols); if(values != null) { SparseArrayFillOperation fillOperation = SPARSE_FILL_OPERATIONS.get(array2DType); fillOperation.fill(array2D, values, rowIndices, colIndices); } return array2D; } private static final Map, SparseArrayFillOperation> SPARSE_FILL_OPERATIONS; static { Map, SparseArrayFillOperation> map = new HashMap, SparseArrayFillOperation>(); map.put(byte[][].class, new ByteArrayFillOperation()); map.put(short[][].class, new ShortArrayFillOperation()); map.put(int[][].class, new IntArrayFillOperation()); map.put(long[][].class, new LongArrayFillOperation()); map.put(float[][].class, new FloatArrayFillOperation()); map.put(double[][].class, new DoubleArrayFillOperation()); map.put(boolean[][].class, new BooleanArrayFillOperation()); map.put(char[][].class, new CharArrayFillOperation()); SPARSE_FILL_OPERATIONS = Collections.unmodifiableMap(map); } @Override int getNumberOfElements() { return _numCols * _numRows; } @Override int getLengthOfDimension(int dimension) { int length; if(dimension == 0) { length = _numRows; } else if(dimension == 1) { length = _numCols; } else { throw new IllegalArgumentException(dimension + " is not a dimension of this array. This array has 2 " + "dimensions"); } return length; } @Override int getNumberOfDimensions() { return 2; } private static interface SparseArrayFillOperation { public void fill(T[] dst, T src, int[] rowIndices, int[] colIndices); } private static class ByteArrayFillOperation implements SparseArrayFillOperation { @Override public void fill(byte[][] dst, byte[] src, int[] rowIndices, int[] colIndices) { for(int i = 0; i < src.length; i++) { dst[rowIndices[i]][colIndices[i]] = src[i]; } } } private static class ShortArrayFillOperation implements SparseArrayFillOperation { @Override public void fill(short[][] dst, short[] src, int[] rowIndices, int[] colIndices) { for(int i = 0; i < src.length; i++) { dst[rowIndices[i]][colIndices[i]] = src[i]; } } } private static class IntArrayFillOperation implements SparseArrayFillOperation { @Override public void fill(int[][] dst, int[] src, int[] rowIndices, int[] colIndices) { for(int i = 0; i < src.length; i++) { dst[rowIndices[i]][colIndices[i]] = src[i]; } } } private static class LongArrayFillOperation implements SparseArrayFillOperation { @Override public void fill(long[][] dst, long[] src, int[] rowIndices, int[] colIndices) { for(int i = 0; i < src.length; i++) { dst[rowIndices[i]][colIndices[i]] = src[i]; } } } private static class FloatArrayFillOperation implements SparseArrayFillOperation { @Override public void fill(float[][] dst, float[] src, int[] rowIndices, int[] colIndices) { for(int i = 0; i < src.length; i++) { dst[rowIndices[i]][colIndices[i]] = src[i]; } } } private static class DoubleArrayFillOperation implements SparseArrayFillOperation { @Override public void fill(double[][] dst, double[] src, int[] rowIndices, int[] colIndices) { for(int i = 0; i < src.length; i++) { dst[rowIndices[i]][colIndices[i]] = src[i]; } } } private static class CharArrayFillOperation implements SparseArrayFillOperation { @Override public void fill(char[][] dst, char[] src, int[] rowIndices, int[] colIndices) { for(int i = 0; i < src.length; i++) { dst[rowIndices[i]][colIndices[i]] = src[i]; } } } private static class BooleanArrayFillOperation implements SparseArrayFillOperation { @Override public void fill(boolean[][] dst, boolean[] src, int[] rowIndices, int[] colIndices) { for(int i = 0; i < src.length; i++) { dst[rowIndices[i]][colIndices[i]] = src[i]; } } } @Override boolean isSparse() { return true; } /** * Converts from a linear index for the array to the corresponding index in {@link #_real} and {@link #_imag}. If * no corresponding index was found then the value returned will be negative. * * @param linearIndex * @return sparse index */ int getSparseIndexForLinearIndex(int linearIndex) { return Arrays.binarySearch(_linearIndices, linearIndex); } /** * Converts from row and column indices for the array to the corresponding index in {@link #_real} and * {@link #_imag}. If no corresponding index was found then the value returned will be negative. * * @param row * @param column * @return sparse index */ int getSparseIndexForIndices(int row, int column) { int linearIndex = ArrayUtils.checkedMultidimensionalIndicesToLinearIndex(_numRows, _numCols, row, column); return Arrays.binarySearch(_linearIndices, linearIndex); } @Override public boolean equals(Object obj) { boolean equal = false; //Same object if(this == obj) { equal = true; } //Same class else if(obj != null && this.getClass().equals(obj.getClass())) { SparseArray other = (SparseArray) obj; //If the two instances are equal their hashcodes must be equal (but not the converse) if(this.hashCode() == other.hashCode()) { //Check equality of the elements of the arrays in expected increasing order of computational complexity //Same base components if(_baseComponentType.equals(other._baseComponentType)) { //Both real values, or both complex values if((this.isReal() && other.isReal()) || (!this.isReal() && !other.isReal())) { //Same dimensions if(_numRows == other._numRows && _numCols == other._numCols) { //Same indices if(Arrays.equals(_linearIndices, other._linearIndices)) { //Finally, compare the inner arrays equal = ArrayUtils.equals(_realValues, other._realValues) && ArrayUtils.equals(_imagValues, other._imagValues); } } } } } } return equal; } @Override public int hashCode() { if(_hashCode == null) { int hashCode = 7; hashCode = 97 * hashCode + _baseComponentType.hashCode(); hashCode = 97 * hashCode + Arrays.hashCode(_linearIndices); hashCode = 97 * hashCode + ArrayUtils.hashCode(_realValues); hashCode = 97 * hashCode + ArrayUtils.hashCode(_imagValues); hashCode = 97 * hashCode + _numRows; hashCode = 97 * hashCode + _numCols; _hashCode = hashCode; } return _hashCode; } /******************************************************************************************************************\ |* Helper methods for creating a sparse array from user supplied arguments *| \******************************************************************************************************************/ private static Map createSparseMap(Class arrayType, int[] rowIndices, int[] colIndices, Object realValues, Object imagValues, int numRows, int numCols) { HashMap sparseMap = new HashMap(); for(int i = 0; i < rowIndices.length; i++) { //Validate the rows and col indices are within specified bounds int row = rowIndices[i]; int col = colIndices[i]; if(row >= numRows && col >= numCols) { throw new ArrayIndexOutOfBoundsException("row or column index is out of bounds\n" + "row: " + row + "\n" + "column: " + col + "\n" + "numRows: " + numRows + "\n" + "numColumns: " + numCols); } //Create a key based on the index in to the array SparseKey key = new SparseKey(row, col, numRows); //Determine the value of the entry, adding it to any value that already exists for this key SparseValue value = getSparseValue(realValues, imagValues, i); SparseValue existingValue = sparseMap.get(key); if(existingValue != null) { value = addSparseValue(value, existingValue); //If the resulting value is the default value, then remove the entry from the map if(value.isDefaultValue()) { sparseMap.remove(key); } } //If the value is not the default value, add the value to the map if(!value.isDefaultValue()) { sparseMap.put(key, value); } } return sparseMap; } private static void validateUserSuppliedParameters(Class linearArrayType, int[] rowIndices, int[] colIndices, Object realValues, Object imagValues) { //Enforce required parameters not be null if(rowIndices == null) { throw new NullPointerException("rowIndices may not be null"); } if(colIndices == null) { throw new NullPointerException("colIndices may not be null"); } if(realValues == null) { throw new NullPointerException("realValues may not be null"); } //Validate lengths of row and col indices if(rowIndices.length != colIndices.length) { throw new IllegalArgumentException("rowIndices and colIndices have differing lengths\n" + "rowIndices length: " + rowIndices.length + "\n" + "colIndices length: " + colIndices.length); } int realLength = Array.getLength(realValues); if(rowIndices.length != realLength) { throw new IllegalArgumentException("indices have differing lengths from the value arrays\n" + "indices length: " + rowIndices.length + "\n" + "value arrays length: " + realLength); } //Confirm realValues is actually an array Class realClass = realValues.getClass(); if(!realClass.isArray()) { throw new IllegalArgumentException("realValues is not an array, type: " + realClass.getCanonicalName()); } //Confirm the realValues is of the supported type Class requiredBaseComponentType = linearArrayType.getComponentType(); Class realBaseComponentType = ArrayUtils.getBaseComponentType(realClass); if(!realBaseComponentType.equals(requiredBaseComponentType)) { throw new IllegalArgumentException("realValues is not an array of the required class\n" + "Required base component type: " + requiredBaseComponentType.getCanonicalName() + "\n" + "Provided base component type: " + realBaseComponentType.getCanonicalName()); } //Real and imag value arrays must have some characteristics in common if(imagValues != null) { if(!imagValues.getClass().equals(realClass)) { throw new IllegalArgumentException("imagValues is not of the same class as realValues\n" + "realValues class: " + realClass.getCanonicalName() + "\n" + "imagValues class: " + imagValues.getClass().getCanonicalName()); } //If imag is provided, it must be the same length as real int imagLength = Array.getLength(imagValues); if(realLength != imagLength) { throw new IllegalArgumentException("realValues and imagValues must be the same length\n" + "realValues length: " + realLength + "\n" + "imagValues length: " + imagLength); } } } private static class SparseKey implements Comparable { final int linearIndex; final int row; final int col; SparseKey(int row, int col, int numRows) { this.linearIndex = ArrayUtils.multidimensionalIndicesToLinearIndex(numRows, row, col); this.row = row; this.col = col; } SparseKey(int linearIndex, int[] dimensions) { this.linearIndex = linearIndex; int[] indices = ArrayUtils.linearIndexToMultidimensionalIndices(dimensions, linearIndex); this.row = indices[0]; this.col = indices[1]; } @Override public int hashCode() { return linearIndex; } @Override public boolean equals(Object obj) { boolean equal = false; if(this == obj) { equal = true; } else if(obj != null && this.getClass().equals(obj.getClass())) { SparseKey otherKey = (SparseKey) obj; equal = (linearIndex == otherKey.linearIndex); } return equal; } @Override public int compareTo(SparseKey other) { return linearIndex - other.linearIndex; } } private static void setSparseValue(SparseValue value, Object realValues, Object imagValues, int index) { if(value instanceof ByteSparseValue) { ((byte[]) realValues)[index] = ((ByteSparseValue) value).real; if(imagValues != null) { ((byte[]) imagValues)[index] = ((ByteSparseValue) value).imag; } } else if(value instanceof ShortSparseValue) { ((short[]) realValues)[index] = ((ShortSparseValue) value).real; if(imagValues != null) { ((short[]) imagValues)[index] = ((ShortSparseValue) value).imag; } } else if(value instanceof IntSparseValue) { ((int[]) realValues)[index] = ((IntSparseValue) value).real; if(imagValues != null) { ((int[]) imagValues)[index] = ((IntSparseValue) value).imag; } } else if(value instanceof LongSparseValue) { ((long[]) realValues)[index] = ((LongSparseValue) value).real; if(imagValues != null) { ((long[]) imagValues)[index] = ((LongSparseValue) value).imag; } } else if(value instanceof FloatSparseValue) { ((float[]) realValues)[index] = ((FloatSparseValue) value).real; if(imagValues != null) { ((float[]) imagValues)[index] = ((FloatSparseValue) value).imag; } } else if(value instanceof DoubleSparseValue) { ((double[]) realValues)[index] = ((DoubleSparseValue) value).real; if(imagValues != null) { ((double[]) imagValues)[index] = ((DoubleSparseValue) value).imag; } } else if(value instanceof CharSparseValue) { ((char[]) realValues)[index] = ((CharSparseValue) value).value; } else if(value instanceof BooleanSparseValue) { ((boolean[]) realValues)[index] = ((BooleanSparseValue) value).value; } else { throw new IllegalArgumentException("Unsupported sparse value\n" + "value: " + value + "\n" + "realValues: " + realValues + "\n" + "imagValue: " + imagValues); } } private static SparseValue getSparseValue(Object realValues, Object imagValues, int index) { SparseValue value; if(realValues instanceof byte[]) { byte real = Array.getByte(realValues, index); byte imag = imagValues == null ? 0 : Array.getByte(imagValues, index); value = new ByteSparseValue(real, imag); } else if(realValues instanceof short[]) { short real = Array.getShort(realValues, index); short imag = imagValues == null ? 0 : Array.getShort(imagValues, index); value = new ShortSparseValue(real, imag); } else if(realValues instanceof int[]) { int real = Array.getInt(realValues, index); int imag = imagValues == null ? 0 : Array.getInt(imagValues, index); value = new IntSparseValue(real, imag); } else if(realValues instanceof long[]) { long real = Array.getLong(realValues, index); long imag = imagValues == null ? 0 : Array.getLong(imagValues, index); value = new LongSparseValue(real, imag); } else if(realValues instanceof float[]) { float real = Array.getFloat(realValues, index); float imag = imagValues == null ? 0 : Array.getFloat(imagValues, index); value = new FloatSparseValue(real, imag); } else if(realValues instanceof double[]) { double real = Array.getDouble(realValues, index); double imag = imagValues == null ? 0 : Array.getDouble(imagValues, index); value = new DoubleSparseValue(real, imag); } else if(realValues instanceof char[]) { char charValue = Array.getChar(realValues, index); value = new CharSparseValue(charValue); } else if(realValues instanceof boolean[]) { boolean booleanValue = Array.getBoolean(realValues, index); value = new BooleanSparseValue(booleanValue); } else { throw new IllegalArgumentException("Cannot create sparse value for array of type: " + realValues.getClass()); } return value; } private static SparseValue addSparseValue(SparseValue value1, SparseValue value2) { SparseValue sum; if(value1 instanceof ByteSparseValue && value2 instanceof ByteSparseValue) { sum = ((ByteSparseValue) value1).add((ByteSparseValue) value2); } else if(value1 instanceof ShortSparseValue && value2 instanceof ShortSparseValue) { sum = ((ShortSparseValue) value1).add((ShortSparseValue) value2); } else if(value1 instanceof IntSparseValue && value2 instanceof IntSparseValue) { sum = ((IntSparseValue) value1).add((IntSparseValue) value2); } else if(value1 instanceof LongSparseValue && value2 instanceof LongSparseValue) { sum = ((LongSparseValue) value1).add((LongSparseValue) value2); } else if(value1 instanceof FloatSparseValue && value2 instanceof FloatSparseValue) { sum = ((FloatSparseValue) value1).add((FloatSparseValue) value2); } else if(value1 instanceof DoubleSparseValue && value2 instanceof DoubleSparseValue) { sum = ((DoubleSparseValue) value1).add((DoubleSparseValue) value2); } else if(value1 instanceof CharSparseValue && value2 instanceof CharSparseValue) { sum = ((CharSparseValue) value1).add((CharSparseValue) value2); } else if(value1 instanceof BooleanSparseValue && value2 instanceof BooleanSparseValue) { sum = ((BooleanSparseValue) value1).add((BooleanSparseValue) value2); } else { throw new IllegalArgumentException("Cannot add " + value1 + " and " + value2); } return sum; } private static interface SparseValue { boolean isDefaultValue(); } private static class ByteSparseValue implements SparseValue { final byte real, imag; ByteSparseValue(byte real, byte imag) { this.real = real; this.imag = imag; } ByteSparseValue add(ByteSparseValue value) { return new ByteSparseValue((byte)(real + value.real), (byte)(imag + value.imag)); } @Override public boolean isDefaultValue() { return (real == (byte)0) && (imag == (byte)0); } } private static class ShortSparseValue implements SparseValue { final short real, imag; ShortSparseValue(short real, short imag) { this.real = real; this.imag = imag; } ShortSparseValue add(ShortSparseValue value) { return new ShortSparseValue((short)(real + value.real), (short)(imag + value.imag)); } @Override public boolean isDefaultValue() { return (real == (short)0) && (imag == (short)0); } } private static class IntSparseValue implements SparseValue { final int real, imag; IntSparseValue(int real, int imag) { this.real = real; this.imag = imag; } IntSparseValue add(IntSparseValue value) { return new IntSparseValue((real + value.real), (imag + value.imag)); } @Override public boolean isDefaultValue() { return (real == 0) && (imag == 0); } } private static class LongSparseValue implements SparseValue { final long real, imag; LongSparseValue(long real, long imag) { this.real = real; this.imag = imag; } LongSparseValue add(LongSparseValue value) { return new LongSparseValue((real + value.real), (imag + value.imag)); } @Override public boolean isDefaultValue() { return (real == 0L) && (imag == 0L); } } private static class FloatSparseValue implements SparseValue { final float real, imag; FloatSparseValue(float real, float imag) { this.real = real; this.imag = imag; } FloatSparseValue add(FloatSparseValue value) { return new FloatSparseValue((real + value.real), (imag + value.imag)); } @Override public boolean isDefaultValue() { return (real == 0f) && (imag == 0f); } } private static class DoubleSparseValue implements SparseValue { final double real, imag; DoubleSparseValue(double real, double imag) { this.real = real; this.imag = imag; } DoubleSparseValue add(DoubleSparseValue value) { return new DoubleSparseValue((real + value.real), (imag + value.imag)); } @Override public boolean isDefaultValue() { return (real == 0d) && (imag == 0d); } } private static class CharSparseValue implements SparseValue { final char value; CharSparseValue(char value) { this.value = value; } CharSparseValue add(CharSparseValue value) { return new CharSparseValue((char)(this.value + value.value)); } @Override public boolean isDefaultValue() { return (value == '\0'); } } private static class BooleanSparseValue implements SparseValue { final boolean value; BooleanSparseValue(boolean value) { this.value = value; } BooleanSparseValue add(BooleanSparseValue value) { return new BooleanSparseValue(this.value || value.value); } @Override public boolean isDefaultValue() { return !value; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy