All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.api.complex.BaseComplexNDArray Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*
 *
 *  * Copyright 2015 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 *
 */

package org.nd4j.linalg.api.complex;


import org.apache.commons.math3.util.FastMath;
import org.nd4j.linalg.api.blas.BlasBufferUtil;
import org.nd4j.linalg.api.buffer.DataBuffer;
import org.nd4j.linalg.api.ndarray.BaseNDArray;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.NDArrayFactory;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.conditions.Condition;
import org.nd4j.linalg.ops.transforms.Transforms;
import org.nd4j.linalg.util.ArrayUtil;
import org.nd4j.linalg.util.LinAlgExceptions;
import org.nd4j.linalg.api.shape.Shape;

import java.util.*;

import static org.nd4j.linalg.util.ArrayUtil.calcStrides;
import static org.nd4j.linalg.util.ArrayUtil.calcStridesFortran;


/**
 * ComplexNDArray for complex numbers.
 * 

*

* Note that the indexing scheme for a complex ndarray is 2 * length * not length. *

* The reason for this is the fact that imaginary components have * to be stored alongside realComponent components. * * @author Adam Gibson */ public abstract class BaseComplexNDArray extends BaseNDArray implements IComplexNDArray { public BaseComplexNDArray() { } /** * * @param data * @param shape * @param stride */ public BaseComplexNDArray(DataBuffer data, int[] shape, int[] stride) { this(data, shape, stride, 0, Nd4j.order()); } /** * * @param data */ public BaseComplexNDArray(float[] data) { super(data); } /** * * @param buffer * @param shape * @param stride * @param offset * @param ordering */ public BaseComplexNDArray(DataBuffer buffer, int[] shape, int[] stride, int offset, char ordering) { super(buffer, shape, stride, offset, ordering); } /** * Create this ndarray with the given data and shape and 0 offset * * @param data the data to use * @param shape the shape of the ndarray * @param ordering */ public BaseComplexNDArray(float[] data, int[] shape, char ordering) { this(data, shape, Nd4j.getComplexStrides(shape, ordering), 0, ordering); } /** * * @param shape * @param offset * @param ordering */ public BaseComplexNDArray(int[] shape, int offset, char ordering) { this(Nd4j.createBuffer(ArrayUtil.prod(shape) * 2), shape, Nd4j.getComplexStrides(shape, ordering), offset, ordering); } /** * * @param shape */ public BaseComplexNDArray(int[] shape) { this(Nd4j.createBuffer(ArrayUtil.prod(shape) * 2), shape, Nd4j.getComplexStrides(shape)); } /** * * @param data * @param shape * @param stride * @param ordering */ public BaseComplexNDArray(float[] data, int[] shape, int[] stride, char ordering) { this(data, shape, stride, 0, ordering); } public BaseComplexNDArray(int[] shape, char ordering) { this(Nd4j.createBuffer(ArrayUtil.prod(shape) * 2), shape, Nd4j.getComplexStrides(shape, ordering), 0, ordering); } /** * Initialize the given ndarray as the real component * * @param m the real component * @param stride the stride of the ndarray * @param ordering the ordering for the ndarray */ public BaseComplexNDArray(INDArray m, int[] stride, char ordering) { this(m.shape(), stride, ordering); copyFromReal(m); } /** * Construct a complex matrix from a realComponent matrix. */ public BaseComplexNDArray(INDArray m, char ordering) { this(m.shape(), ordering); copyFromReal(m); } /** * Construct a complex matrix from a realComponent matrix. */ public BaseComplexNDArray(INDArray m) { this(m, Nd4j.order()); } /** * Create with the specified ndarray as the real component * and the given stride * * @param m the ndarray to use as the stride * @param stride the stride of the ndarray */ public BaseComplexNDArray(INDArray m, int[] stride) { this(m, stride, Nd4j.order()); } /** * Create an ndarray from the specified slices * and the given shape * * @param slices the slices of the ndarray * @param shape the final shape of the ndarray * @param stride the stride of the ndarray */ public BaseComplexNDArray(List slices, int[] shape, int[] stride) { this(slices, shape, stride, Nd4j.order()); } /** * Create an ndarray from the specified slices * and the given shape * * @param slices the slices of the ndarray * @param shape the final shape of the ndarray * @param stride the stride of the ndarray * @param ordering the ordering for the ndarray */ public BaseComplexNDArray(List slices, int[] shape, int[] stride, char ordering) { this(new float[ArrayUtil.prod(shape) * 2]); List list = new ArrayList<>(); for (int i = 0; i < slices.size(); i++) { IComplexNDArray flattened = slices.get(i).ravel(); for (int j = 0; j < flattened.length(); j++) list.add(flattened.getComplex(j)); } this.ordering = ordering; this.data = Nd4j.createBuffer(ArrayUtil.prod(shape) * 2); this.stride = stride; init(shape); int count = 0; for (int i = 0; i < list.size(); i++) { putScalar(count, list.get(i)); count++; } } /** * Create an ndarray from the specified slices * and the given shape * * @param slices the slices of the ndarray * @param shape the final shape of the ndarray * @param ordering the ordering of the ndarray */ public BaseComplexNDArray(List slices, int[] shape, char ordering) { this(slices, shape, Nd4j.getComplexStrides(shape, ordering), ordering); } public BaseComplexNDArray(float[] data, int[] shape, int[] stride, int offset, Character order) { this.data = Nd4j.createBuffer(data); this.stride = ArrayUtil.copy(stride); this.offset = offset; this.ordering = order; init(shape); } /** * * @param data */ public BaseComplexNDArray(DataBuffer data) { super(data); } /** * * @param data * @param shape * @param stride * @param offset */ public BaseComplexNDArray(DataBuffer data, int[] shape, int[] stride, int offset) { this.data = data; this.stride = ArrayUtil.copy(stride); this.offset = offset; this.ordering = Nd4j.order(); init(shape); } /** * * @param data * @param shape * @param stride * @param offset * @param ordering */ public BaseComplexNDArray(IComplexNumber[] data, int[] shape, int[] stride, int offset, char ordering) { this(shape, stride, offset, ordering); assert data.length <= length; for (int i = 0; i < data.length; i++) { putScalar(i, data[i]); } } /** * * @param data * @param shape */ public BaseComplexNDArray(DataBuffer data, int[] shape) { this(shape); this.data = data; } /** * * @param data * @param shape * @param stride * @param offset */ public BaseComplexNDArray(IComplexNumber[] data, int[] shape, int[] stride, int offset) { this(data, shape, stride, offset, Nd4j.order()); } /** * * @param data * @param shape * @param offset * @param ordering */ public BaseComplexNDArray(IComplexNumber[] data, int[] shape, int offset, char ordering) { this(data, shape, Nd4j.getComplexStrides(shape), offset, ordering); } /** * * @param buffer * @param shape * @param offset * @param ordering */ public BaseComplexNDArray(DataBuffer buffer, int[] shape, int offset, char ordering) { this(buffer, shape, Nd4j.getComplexStrides(shape), offset, ordering); } /** * * @param buffer * @param shape * @param offset */ public BaseComplexNDArray(DataBuffer buffer, int[] shape, int offset) { this(buffer, shape, Nd4j.getComplexStrides(shape), offset, Nd4j.order()); } /** * * @param data * @param order */ public BaseComplexNDArray(float[] data, Character order) { this(data, new int[]{1,data.length / 2}, order); } /** * Create an ndarray from the specified slices * and the given shape * * @param slices the slices of the ndarray * @param shape the final shape of the ndarray */ public BaseComplexNDArray(List slices, int[] shape) { this(slices, shape, Nd4j.order()); } /** * Create a complex ndarray with the given complex doubles. * Note that this maybe an easier setup than the new float * * @param newData the new data for this array * @param shape the shape of the ndarray */ public BaseComplexNDArray(IComplexNumber[] newData, int[] shape) { super(new float[ArrayUtil.prod(shape) * 2]); init(shape); for (int i = 0; i < length; i++) putScalar(i, newData[i].asDouble()); } /** * Create a complex ndarray with the given complex doubles. * Note that this maybe an easier setup than the new float * * @param newData the new data for this array * @param shape the shape of the ndarray */ public BaseComplexNDArray(IComplexNumber[] newData, int[] shape, int[] stride) { super(new float[ArrayUtil.prod(shape) * 2]); this.stride = stride; init(shape); for (int i = 0; i < length; i++) put(i, newData[i].asDouble()); } /** * Create a complex ndarray with the given complex doubles. * Note that this maybe an easier setup than the new float * * @param newData the new data for this array * @param shape the shape of the ndarray * @param ordering the ordering for the ndarray */ public BaseComplexNDArray(IComplexNumber[] newData, int[] shape, char ordering) { super(new float[ArrayUtil.prod(shape) * 2]); this.ordering = ordering; init(shape); for (int i = 0; i < length; i++) put(i, newData[i]); } /** * Initialize with the given data,shape and stride * * @param data the data to use * @param shape the shape of the ndarray * @param stride the stride of the ndarray */ public BaseComplexNDArray(float[] data, int[] shape, int[] stride) { this(data, shape, stride, 0, Nd4j.order()); } /** * * @param data * @param shape */ public BaseComplexNDArray(float[] data, int[] shape) { this(data, shape, 0); } public BaseComplexNDArray(float[] data, int[] shape, int offset, char ordering) { this(data, shape, ordering == NDArrayFactory.C ? calcStrides(shape, 2) : calcStridesFortran(shape, 2), offset, ordering); } public BaseComplexNDArray(float[] data, int[] shape, int offset) { this(data, shape, offset, Nd4j.order()); } /** * Construct an ndarray of the specified shape * with an empty data array * * @param shape the shape of the ndarray * @param stride the stride of the ndarray * @param offset the desired offset */ public BaseComplexNDArray(int[] shape, int[] stride, int offset) { this(new float[ArrayUtil.prod(shape) * 2], shape, stride, offset); } /** * Construct an ndarray of the specified shape * with an empty data array * * @param shape the shape of the ndarray * @param stride the stride of the ndarray * @param offset the desired offset * @param ordering the ordering for the ndarray */ public BaseComplexNDArray(int[] shape, int[] stride, int offset, char ordering) { this(new float[ArrayUtil.prod(shape) * 2], shape, stride, offset); this.ordering = ordering; } /** * Create the ndarray with * the specified shape and stride and an offset of 0 * * @param shape the shape of the ndarray * @param stride the stride of the ndarray */ public BaseComplexNDArray(int[] shape, int[] stride, char ordering) { this(shape, stride, 0, ordering); } /** * Create the ndarray with * the specified shape and stride and an offset of 0 * * @param shape the shape of the ndarray * @param stride the stride of the ndarray */ public BaseComplexNDArray(int[] shape, int[] stride) { this(shape, stride, 0); } /** * @param shape * @param offset */ public BaseComplexNDArray(int[] shape, int offset) { this(shape, offset, Nd4j.order()); } /** * Creates a new n times m ComplexDoubleMatrix. * * @param newRows the number of rows (n) of the new matrix. * @param newColumns the number of columns (m) of the new matrix. */ public BaseComplexNDArray(int newRows, int newColumns) { this(new int[]{newRows, newColumns}); } /** * Creates a new n times m ComplexDoubleMatrix. * * @param newRows the number of rows (n) of the new matrix. * @param newColumns the number of columns (m) of the new matrix. * @param ordering the ordering of the ndarray */ public BaseComplexNDArray(int newRows, int newColumns, char ordering) { this(new int[]{newRows, newColumns}, ordering); } public BaseComplexNDArray(float[] data, int[] shape, int[] stride, int offset) { this(data, shape, stride, offset, Nd4j.order()); } /** * * @param real */ protected void copyFromReal(INDArray real) { if(!Shape.shapeEquals(shape(),real.shape())) throw new IllegalStateException("Unable to copy array. Not the same shape"); INDArray linear = real.linearView(); IComplexNDArray thisLinear = linearView(); for (int i = 0; i < linear.length(); i++) { thisLinear.putScalar(i, Nd4j.createComplexNumber(linear.getDouble(i),0.0)); } } @Override protected IComplexNDArray create(DataBuffer data, int[] shape, int[] strides) { return Nd4j.createComplex(data,shape,strides,offset(),ordering()); } /** * Copy real numbers to arr * @param arr the arr to copy to */ protected void copyRealTo(INDArray arr) { INDArray linear = arr.linearView(); IComplexNDArray thisLinear = linearView(); if(arr.isScalar()) arr.putScalar(0,getReal(0)); else for (int i = 0; i < linear.length(); i++) { arr.putScalar(i, thisLinear.getReal(i)); } } /** * Copy imaginary numbers to the given * ndarray * @param arr the array to copy imaginary numbers to */ protected void copyImagTo(INDArray arr) { INDArray linear = arr.linearView(); IComplexNDArray thisLinear = linearView(); if(arr.isScalar()) arr.putScalar(0,getReal(0)); else for (int i = 0; i < linear.length(); i++) { arr.putScalar(i, thisLinear.getImag(i)); } } @Override public int blasOffset() { return offset(); } @Override public IComplexNDArray linearViewColumnOrder() { return Nd4j.createComplex(data, new int[]{length, 1}, offset()); } /** * Returns a linear view reference of shape * 1,length(ndarray) * * @return the linear view of this ndarray */ @Override public IComplexNDArray linearView() { if (isVector() || isScalar() || length() == 1 || length() == size(0)) return this; if (linearView == null) resetLinearView(); return (IComplexNDArray) linearView; } @Override public void resetLinearView() { if(isVector() || isScalar() || length() == 1) linearView = this; else if(ordering() == NDArrayFactory.C && offset == 0 && length() == data().length()) { linearView = Nd4j.createComplex(data(),new int[]{1,length()},new int[]{1,elementStride()},offset); } else linearView = new LinearViewComplexNDArray(this); } @Override public IComplexNumber getComplex(int i, IComplexNumber result) { if(!isVector() || i >= length()) throw new IllegalArgumentException("Given index >= length " + length()); IComplexNumber d = getComplex(i); return result.set(d.realComponent(), d.imaginaryComponent()); } @Override public IComplexNumber getComplex(int i, int j, IComplexNumber result) { IComplexNumber d = getComplex(i, j); return result.set(d.realComponent(), d.imaginaryComponent()); } @Override public IComplexNDArray putScalar(int j, int i, IComplexNumber conji) { return putScalar(new int[]{j, i}, conji); } /** * Returns an ndarray with 1 if the element is epsilon equals * * @param other the number to compare * @return a copied ndarray with the given * binary conditions */ @Override public IComplexNDArray eps(Number other) { return dup().epsi(other); } /** * Returns an ndarray with 1 if the element is epsilon equals * * @param other the number to compare * @return a copied ndarray with the given * binary conditions */ @Override public IComplexNDArray eps(IComplexNumber other) { return dup().epsi(other); } /** * Returns an ndarray with 1 if the element is epsilon equals * * @param other the number to compare * @return a copied ndarray with the given * binary conditions */ @Override public IComplexNDArray epsi(IComplexNumber other) { IComplexNDArray linear = linearView(); double otherVal = other.realComponent().doubleValue(); for (int i = 0; i < linearView().length(); i++) { IComplexNumber n = linear.getComplex(i); double real = n.realComponent().doubleValue(); double diff = Math.abs(real - otherVal); if (diff <= Nd4j.EPS_THRESHOLD) linear.putScalar(i, Nd4j.createDouble(1, 0)); else linear.putScalar(i, Nd4j.createDouble(0, 0)); } return this; } /** * Returns an ndarray with 1 if the element is epsilon equals * * @param other the number to compare * @return a copied ndarray with the given * binary conditions */ @Override public IComplexNDArray epsi(Number other) { IComplexNDArray linear = linearView(); double otherVal = other.doubleValue(); for (int i = 0; i < linearView().length(); i++) { IComplexNumber n = linear.getComplex(i); double real = n.realComponent().doubleValue(); double diff = Math.abs(real - otherVal); if (diff <= Nd4j.EPS_THRESHOLD) linear.putScalar(i, Nd4j.createDouble(1, 0)); else linear.putScalar(i, Nd4j.createDouble(0, 0)); } return this; } /** * epsilon equals than comparison: * If the given number is less than the * comparison number the item is 0 otherwise 1 * * @param other the number to compare * @return */ @Override public IComplexNDArray eps(INDArray other) { return dup().epsi(other); } /** * In place epsilon equals than comparison: * If the given number is less than the * comparison number the item is 0 otherwise 1 * * @param other the number to compare * @return */ @Override public IComplexNDArray epsi(INDArray other) { IComplexNDArray linear = linearView(); if (other instanceof IComplexNDArray) { IComplexNDArray otherComplex = (IComplexNDArray) other; IComplexNDArray otherComplexLinear = otherComplex.linearView(); for (int i = 0; i < linearView().length(); i++) { IComplexNumber n = linear.getComplex(i); IComplexNumber otherComplexNumber = otherComplexLinear.getComplex(i); double real = n.absoluteValue().doubleValue(); double otherAbs = otherComplexNumber.absoluteValue().doubleValue(); double diff = Math.abs(real - otherAbs); if (diff <= Nd4j.EPS_THRESHOLD) linear.putScalar(i, Nd4j.createDouble(1, 0)); else linear.putScalar(i, Nd4j.createDouble(0, 0)); } } return this; } @Override public IComplexNDArray lt(Number other) { return dup().lti(other); } @Override public IComplexNDArray lti(Number other) { IComplexNDArray linear = linearView(); double val = other.doubleValue(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, linear.getComplex(i).absoluteValue().doubleValue() < val ? Nd4j.createComplexNumber(1, 0) : Nd4j.createComplexNumber(0, 0)); } return this; } @Override public IComplexNDArray eq(Number other) { return dup().eqi(other); } @Override public IComplexNDArray eqi(Number other) { IComplexNDArray linear = linearView(); double val = other.doubleValue(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, linear.getComplex(i).absoluteValue().doubleValue() == val ? Nd4j.createComplexNumber(1, 0) : Nd4j.createComplexNumber(0, 0)); } return this; } @Override public IComplexNDArray gt(Number other) { return dup().gti(other); } @Override public IComplexNDArray gti(Number other) { IComplexNDArray linear = linearView(); double val = other.doubleValue(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, linear.getComplex(i).absoluteValue().doubleValue() > val ? Nd4j.createComplexNumber(1, 0) : Nd4j.createComplexNumber(0, 0)); } return this; } @Override public IComplexNDArray lt(INDArray other) { return dup().lti(other); } @Override public IComplexNDArray lti(INDArray other) { if (other instanceof IComplexNDArray) { IComplexNDArray linear = linearView(); IComplexNDArray otherLinear = (IComplexNDArray) other.linearView(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, linear.getComplex(i).absoluteValue().doubleValue() < otherLinear.getComplex(i).absoluteValue().doubleValue() ? Nd4j.createComplexNumber(1, 0) : Nd4j.createComplexNumber(0, 0)); } } else { IComplexNDArray linear = linearView(); INDArray otherLinear = other.linearView(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, linear.getComplex(i).absoluteValue().doubleValue() < otherLinear.getDouble(i) ? Nd4j.createComplexNumber(1, 0) : Nd4j.createComplexNumber(0, 0)); } } return this; } @Override public IComplexNDArray eq(INDArray other) { return dup().eqi(other); } @Override public IComplexNDArray eqi(INDArray other) { if (other instanceof IComplexNDArray) { IComplexNDArray linear = linearView(); IComplexNDArray otherLinear = (IComplexNDArray) other.linearView(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, linear.getComplex(i).absoluteValue().doubleValue() == otherLinear.getComplex(i).absoluteValue().doubleValue() ? Nd4j.createComplexNumber(1, 0) : Nd4j.createComplexNumber(0, 0)); } } else { IComplexNDArray linear = linearView(); INDArray otherLinear = other.linearView(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, linear.getComplex(i).absoluteValue().doubleValue() == otherLinear.getDouble(i) ? Nd4j.createComplexNumber(1, 0) : Nd4j.createComplexNumber(0, 0)); } } return this; } @Override public IComplexNDArray neq(INDArray other) { return dup().neqi(other); } @Override public IComplexNDArray neq(Number other) { return dup().neqi(other); } @Override public IComplexNDArray neqi(Number other) { IComplexNDArray linear = linearView(); double otherVal = other.doubleValue(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, linear.getComplex(i).absoluteValue().doubleValue() != otherVal ? Nd4j.createComplexNumber(1, 0) : Nd4j.createComplexNumber(0, 0)); } return this; } @Override public IComplexNDArray neqi(INDArray other) { if (other instanceof IComplexNDArray) { IComplexNDArray linear = linearView(); IComplexNDArray otherLinear = (IComplexNDArray) other.linearView(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, linear.getComplex(i).absoluteValue().doubleValue() != otherLinear.getComplex(i).absoluteValue().doubleValue() ? Nd4j.createComplexNumber(1, 0) : Nd4j.createComplexNumber(0, 0)); } } else { IComplexNDArray linear = linearView(); INDArray otherLinear = other.linearView(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, linear.getComplex(i).absoluteValue().doubleValue() != otherLinear.getDouble(i) ? Nd4j.createComplexNumber(1, 0) : Nd4j.createComplexNumber(0, 0)); } } return this; } @Override public IComplexNDArray gt(INDArray other) { return dup().gti(other); } @Override public IComplexNDArray gti(INDArray other) { if (other instanceof IComplexNDArray) { IComplexNDArray linear = linearView(); IComplexNDArray otherLinear = (IComplexNDArray) other.linearView(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, linear.getComplex(i).absoluteValue().doubleValue() > otherLinear.getComplex(i).absoluteValue().doubleValue() ? Nd4j.createComplexNumber(1, 0) : Nd4j.createComplexNumber(0, 0)); } } else { IComplexNDArray linear = linearView(); INDArray otherLinear = other.linearView(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, linear.getComplex(i).absoluteValue().doubleValue() > otherLinear.getDouble(i) ? Nd4j.createComplexNumber(1, 0) : Nd4j.createComplexNumber(0, 0)); } } return this; } @Override public IComplexNDArray rdiv(Number n, INDArray result) { return dup().rdivi(n, result); } @Override public IComplexNDArray rdivi(Number n, INDArray result) { return rdivi(Nd4j.createDouble(n.doubleValue(), 0), result); } @Override public IComplexNDArray rsub(Number n, INDArray result) { return dup().rsubi(n, result); } @Override public IComplexNDArray rsubi(Number n, INDArray result) { return rsubi(Nd4j.createDouble(n.doubleValue(), 0), result); } @Override public IComplexNDArray div(Number n, INDArray result) { return dup().divi(n, result); } @Override public IComplexNDArray divi(Number n, INDArray result) { return divi(Nd4j.createDouble(n.doubleValue(), 0), result); } @Override public IComplexNDArray mul(Number n, INDArray result) { return dup().muli(n, result); } @Override public IComplexNDArray muli(Number n, INDArray result) { return muli(Nd4j.createDouble(n.doubleValue(), 0), result); } @Override public IComplexNDArray sub(Number n, INDArray result) { return dup().subi(n, result); } @Override public IComplexNDArray subi(Number n, INDArray result) { return subi(Nd4j.createDouble(n.doubleValue(), 0), result); } @Override public IComplexNDArray add(Number n, INDArray result) { return dup().addi(n, result); } @Override public IComplexNDArray addi(Number n, INDArray result) { return addi(Nd4j.createDouble(n.doubleValue(), 0), result); } @Override public IComplexNDArray dup() { return (IComplexNDArray) Shape.toOffsetZeroCopy(this); } @Override public IComplexNDArray rsubRowVector(INDArray rowVector) { return dup().rsubiRowVector(rowVector); } @Override public IComplexNDArray rsubiRowVector(INDArray rowVector) { return doRowWise(rowVector, 't'); } @Override public IComplexNDArray rsubColumnVector(INDArray columnVector) { return dup().rsubiColumnVector(columnVector); } @Override public IComplexNDArray rsubiColumnVector(INDArray columnVector) { return doColumnWise(columnVector, 'h'); } @Override public IComplexNDArray rdivRowVector(INDArray rowVector) { return dup().rdiviRowVector(rowVector); } @Override public IComplexNDArray rdiviRowVector(INDArray rowVector) { return doRowWise(rowVector, 't'); } @Override public IComplexNDArray rdivColumnVector(INDArray columnVector) { return dup().rdiviColumnVector(columnVector); } @Override public IComplexNDArray rdiviColumnVector(INDArray columnVector) { return doColumnWise(columnVector, 't'); } @Override protected IComplexNDArray doRowWise(INDArray rowVector, char operation) { return (IComplexNDArray) super.doRowWise(rowVector,operation); } @Override protected IComplexNDArray doColumnWise(INDArray columnVector, char operation) { return (IComplexNDArray) super.doColumnWise(columnVector,operation); } /** * Returns the squared (Euclidean) distance. */ @Override public double squaredDistance(INDArray other) { double sd = 0.0; if (other instanceof IComplexNDArray) { IComplexNDArray n = (IComplexNDArray) other; IComplexNDArray nLinear = n.linearView(); for (int i = 0; i < length; i++) { IComplexNumber diff = linearView().getComplex(i).sub(nLinear.getComplex(i)); double d = diff.absoluteValue().doubleValue(); sd += d * d; } return sd; } for (int i = 0; i < length; i++) { INDArray linear = other.linearView(); IComplexNumber diff = linearView().getComplex(i).sub(linear.getDouble(i)); double d = diff.absoluteValue().doubleValue(); sd += d * d; } return sd; } /** * Returns the (euclidean) distance. */ @Override public double distance2(INDArray other) { return Math.sqrt(squaredDistance(other)); } /** * Returns the (1-norm) distance. */ @Override public double distance1(INDArray other) { float d = 0.0f; if (other instanceof IComplexNDArray) { IComplexNDArray n2 = (IComplexNDArray) other; IComplexNDArray n2Linear = n2.linearView(); for (int i = 0; i < length; i++) { IComplexNumber n = getComplex(i).sub(n2Linear.getComplex(i)); d += n.absoluteValue().doubleValue(); } return d; } INDArray linear = other.linearView(); for (int i = 0; i < length; i++) { IComplexNumber n = linearView().getComplex(i).sub(linear.getDouble(i)); d += n.absoluteValue().doubleValue(); } return d; } @Override public IComplexNDArray put(INDArrayIndex[] indices, INDArray element) { super.put(indices,element); return this; } @Override public IComplexNDArray normmax(int...dimension) { return Nd4j.createComplex(super.normmax(dimension)); } @Override public Number normmaxNumber() { return normmaxComplex().absoluteValue(); } @Override public IComplexNumber normmaxComplex() { return normmax(Integer.MAX_VALUE).getComplex(0); } @Override public IComplexNDArray prod(int...dimension) { return Nd4j.createComplex(super.prod(dimension)); } @Override public Number prodNumber() { return prodComplex().absoluteValue(); } @Override public IComplexNumber prodComplex() { return prod(Integer.MAX_VALUE).getComplex(0); } @Override public IComplexNDArray mean(int...dimension) { return Nd4j.createComplex(super.mean(dimension)); } @Override public Number meanNumber() { return meanComplex().absoluteValue(); } @Override public IComplexNumber meanComplex() { return mean(Integer.MAX_VALUE).getComplex(0); } @Override public IComplexNDArray var(int...dimension) { return Nd4j.createComplex(super.var(dimension)); } @Override public Number varNumber() { return varComplex().absoluteValue(); } @Override public IComplexNumber varComplex() { return var(Integer.MAX_VALUE).getComplex(0); } @Override public IComplexNDArray max(int...dimension) { return Nd4j.createComplex(super.max(dimension)); } @Override public Number maxNumber() { return maxComplex().absoluteValue(); } @Override public IComplexNumber maxComplex() { return max(Integer.MAX_VALUE).getComplex(0); } @Override public IComplexNDArray sum(int...dimension) { return Nd4j.createComplex(super.sum(dimension)); } @Override public Number sumNumber() { return sumComplex().absoluteValue(); } @Override public IComplexNumber sumComplex() { return sum(Integer.MAX_VALUE).getComplex(0); } @Override public IComplexNDArray min(int...dimension) { return Nd4j.createComplex(super.min(dimension)); } @Override public Number minNumber() { return minComplex().absoluteValue(); } @Override public IComplexNumber minComplex() { return min(Integer.MAX_VALUE).getComplex(0); } @Override public IComplexNDArray norm1(int...dimension) { return Nd4j.createComplex(super.norm1(dimension)); } @Override public Number norm1Number() { return norm1Complex().absoluteValue(); } @Override public IComplexNumber norm1Complex() { return norm1(Integer.MAX_VALUE).getComplex(0); } @Override public IComplexNDArray std(int...dimension) { return Nd4j.createComplex(super.std(dimension)); } @Override public Number stdNumber() { return stdComplex().absoluteValue(); } @Override public IComplexNumber stdComplex() { return std(Integer.MAX_VALUE).getComplex(0); } @Override public IComplexNDArray norm2(int...dimension) { return Nd4j.createComplex(super.norm2(dimension)); } @Override public Number norm2Number() { return norm2Complex().absoluteValue(); } @Override public IComplexNumber norm2Complex() { return norm2(Integer.MAX_VALUE).getComplex(0); } /** * Inserts the element at the specified index * * @param i the row insert into * @param j the column to insert into * @param element a scalar ndarray * @return a scalar ndarray of the element at this index */ @Override public IComplexNDArray put(int i, int j, Number element) { return (IComplexNDArray) super.put(i, j, Nd4j.scalar(element)); } /** * @param indexes * @param value * @return */ @Override public IComplexNDArray put(int[] indexes, double value) { int ix = offset; if (indexes.length != shape.length) throw new IllegalArgumentException("Unable to applyTransformToDestination values: number of indices must be equal to the shape"); for (int i = 0; i < shape.length; i++) ix += indexes[i] * stride[i]; data.put(ix, value); return this; } @Override public IComplexNDArray put(int i, int j, IComplexNumber complex) { return putScalar(new int[]{i, j}, complex); } /** * Assigns the given matrix (put) to the specified slice * * @param slice the slice to assign * @param put the slice to transform * @return this for chainability */ @Override public IComplexNDArray putSlice(int slice, IComplexNDArray put) { if (isScalar()) { assert put.isScalar() : "Invalid dimension. Can only insert a scalar in to another scalar"; put(0, put.getScalar(0)); return this; } else if (isVector()) { assert put.isScalar() || put.isVector() && put.length() == length() : "Invalid dimension on insertion. Can only insert scalars input vectors"; if (put.isScalar()) putScalar(slice, put.getComplex(0)); else for (int i = 0; i < length(); i++) putScalar(i, put.getComplex(i)); return this; } assertSlice(put, slice); IComplexNDArray view = slice(slice); if (put.length() == 1) putScalar(slice, put.getComplex(0)); else if (put.isVector()) for (int i = 0; i < put.length(); i++) view.putScalar(i, put.getComplex(i)); else { assert Shape.shapeEquals(view.shape(),put.shape()); IComplexNDArray linear = (IComplexNDArray)view.linearView(); IComplexNDArray putLinearView = put.linearView(); for(int i = 0; i < linear.length(); i++) { linear.putScalar(i,putLinearView.getComplex(i)); } } return this; } /** * Mainly here for people coming from numpy. * This is equivalent to a call to permute * * @param dimension the dimension to swap * @param with the one to swap it with * @return the swapped axes view */ public IComplexNDArray swapAxes(int dimension, int with) { return (IComplexNDArray) super.swapAxes(dimension, with); } /** * Compute complex conj (in-place). */ @Override public IComplexNDArray conji() { IComplexNDArray reshaped = linearView(); IComplexDouble c = Nd4j.createDouble(0.0, 0); for (int i = 0; i < length; i++) { IComplexNumber conj = reshaped.getComplex(i, c).conj(); reshaped.putScalar(i, conj); } return this; } @Override public IComplexNDArray hermitian() { IComplexNDArray result = Nd4j.createComplex(shape()); IComplexDouble c = Nd4j.createDouble(0, 0); for (int i = 0; i < slices(); i++) for (int j = 0; j < columns; j++) result.putScalar(j, i, getComplex(i, j, c).conji()); return result; } /** * Compute complex conj. */ @Override public IComplexNDArray conj() { return dup().conji(); } @Override public INDArray getReal() { INDArray result = Nd4j.create(shape()); IComplexNDArray linearView = linearView(); INDArray linearRet = result.linearView(); for (int i = 0; i < linearView.length(); i++) { linearRet.putScalar(i, linearView.getReal(i)); } return result; } @Override public double getImag(int i) { return getComplex(i).imaginaryComponent().doubleValue(); } @Override public double getReal(int i) { return getComplex(i).realComponent().doubleValue(); } @Override public IComplexNDArray putReal(int rowIndex, int columnIndex, double value) { data.put(2 * index(rowIndex, columnIndex) + offset, value); return this; } @Override public IComplexNDArray putImag(int rowIndex, int columnIndex, double value) { data.put(index(rowIndex, columnIndex) + 1 + offset, value); return this; } @Override public IComplexNDArray putReal(int i, float v) { super.putScalar(i,v); return this; } @Override public IComplexNDArray putImag(int i, float v) { int offset = this.offset + Shape.offsetFor(this, i) + 1; data.put(offset,v); return this; } @Override public IComplexNumber getComplex(int i) { if(i >= length()) throw new IllegalArgumentException("Index " + i + " >= " + length()); int[] dimensions = Shape.ind2sub(this,i); return getComplex(dimensions); } @Override public IComplexNumber getComplex(int i, int j) { return getComplex(new int[]{i, j}); } @Override public IComplexNumber getComplex(int... indices) { int ix = offset; for (int i = 0; i < indices.length; i++) ix += indices[i] * stride[i]; return data.getComplex(ix); } /** * Get realComponent part of the matrix. */ @Override public INDArray real() { INDArray ret = Nd4j.create(shape); copyRealTo(ret); return ret; } /** * Get imaginary part of the matrix. */ @Override public INDArray imag() { INDArray ret = Nd4j.create(shape); copyImagTo(ret); return ret; } /** * Inserts the element at the specified index * * @param i the index insert into * @param element a scalar ndarray * @return a scalar ndarray of the element at this index */ @Override public IComplexNDArray put(int i, IComplexNDArray element) { if (element == null) throw new IllegalArgumentException("Unable to insert null element"); assert element.isScalar() : "Unable to insert non scalar element"; int idx = linearIndex(i); IComplexNumber n = element.getComplex(0); data.put(idx, n.realComponent().doubleValue()); data.put(idx + 1, n.imaginaryComponent().doubleValue()); return this; } /** * Fetch a particular number on a multi dimensional scale. * * @param indexes the indexes to getFromOrigin a number from * @return the number at the specified indices */ @Override public IComplexNDArray getScalar(int... indexes) { int ix = offset; for (int i = 0; i < shape.length; i++) { ix += indexes[i] * stride[i]; } return Nd4j.scalar(Nd4j.createDouble(data.getDouble(ix), data.getDouble(ix + 1))); } /** * Validate dimensions are equal * * @param other the other ndarray to compare */ @Override public void checkDimensions(INDArray other) { } /** * Assigns the given matrix (put) to the specified slice * * @param slice the slice to assign * @param put the slice to put * @return this for chainability */ @Override public IComplexNDArray putSlice(int slice, INDArray put) { return putSlice(slice,Nd4j.createComplex(put)); } @Override public IComplexNDArray subArray(int[] offsets, int[] shape, int[] stride) { return (IComplexNDArray) super.subArray(offsets, shape, stride); } /** * Inserts the element at the specified index * * @param indices the indices to insert into * @param element a scalar ndarray * @return a scalar ndarray of the element at this index */ @Override public IComplexNDArray put(int[] indices, INDArray element) { if (!element.isScalar()) throw new IllegalArgumentException("Unable to insert anything but a scalar"); if(isRowVector() && indices.length == 2 && indices[0] == 0) { int idx = linearIndex(indices[1]); if(element instanceof IComplexNDArray) { IComplexNDArray arr2 = (IComplexNDArray) element; data.put(idx,arr2.getComplex(0)); } else data.put(idx,element.getDouble(0)); } else { int ix = offset; if (indices.length != shape.length) throw new IllegalArgumentException("Unable to op values: number of indices must be equal to the shape"); for (int i = 0; i < shape.length; i++) ix += indices[i] * stride[i]; if (element instanceof IComplexNDArray) { IComplexNumber element2 = ((IComplexNDArray) element).getComplex(0); data.put(ix, element2.realComponent().doubleValue()); data.put(ix + 1, element2.imaginaryComponent().doubleValue()); } else { double element2 = element.getDouble(0); data.put(ix, element2); data.put(ix + 1, 0); } } return this; } /** * Inserts the element at the specified index * * @param i the row insert into * @param j the column to insert into * @param element a scalar ndarray * @return a scalar ndarray of the element at this index */ @Override public IComplexNDArray put(int i, int j, INDArray element) { return put(new int[]{i, j}, element); } @Override protected IComplexNDArray create(BaseNDArray baseNDArray) { return Nd4j.createComplex(baseNDArray); } protected IComplexNDArray createScalar(double d) { return Nd4j.createComplex(Nd4j.scalar(d)); } protected INDArray createScalarForIndex(int i,boolean applyOffset) { return Nd4j.createComplex(data(), new int[]{1, 1}, new int[]{1, 1}, applyOffset ? offset + i : i); } /** * Returns the specified slice of this matrix. * In matlab, this would be equivalent to (given a 2 x 2 x 2): * A(:,:,x) where x is the slice you want to return. *

* The slice is always relative to the final dimension of the matrix. * * @param slice the slice to return * @return the specified slice of this matrix */ @Override public IComplexNDArray slice(int slice) { return (IComplexNDArray) super.slice(slice); } @Override public int elementStride() { return 2; } @Override protected IComplexNDArray create(int[] shape) { return Nd4j.createComplex(shape, Nd4j.getComplexStrides(shape, ordering), 0); } @Override protected IComplexNDArray create(int[] shape,int[] strides,int offset) { return Nd4j.createComplex(shape, strides, offset); } @Override protected int[] getStrides(int[] shape,char ordering) { return Nd4j.getComplexStrides(shape, ordering); } @Override protected IComplexNDArray create(DataBuffer data, int[] newShape, int[] newStrides, int offset, char ordering) { return Nd4j.createComplex(data, newShape, newStrides, offset, ordering); } /** * Returns the slice of this from the specified dimension * * @param slice the dimension to return from * @param dimension the dimension of the slice to return * @return the slice of this matrix from the specified dimension * and dimension */ @Override public IComplexNDArray slice(int slice, int dimension) { return (IComplexNDArray) super.slice(slice,dimension); } @Override protected IComplexNDArray newShape(int[] newShape, char ordering) { return Nd4j.createComplex(super.newShape(newShape,ordering)); } @Override protected IComplexNDArray create(DataBuffer data, int[] newShape, int[] newStrides, int offset) { return Nd4j.createComplex(data, newShape, newStrides, offset); } /** * Replicate and tile array to fill out to the given shape * * @param shape the new shape of this ndarray * @return the shape to fill out to */ @Override public IComplexNDArray repmat(int[] shape) { return (IComplexNDArray) super.repmat(shape); } /** * Assign all of the elements in the given * ndarray to this ndarray * * @param arr the elements to assign * @return this */ @Override public IComplexNDArray assign(IComplexNDArray arr) { if (!arr.isScalar()) LinAlgExceptions.assertSameShape(this, arr); IComplexNDArray linear = linearView(); IComplexNDArray otherLinear = arr.linearView(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, otherLinear.getComplex(i)); } return this; } @Override public void assign(IComplexNumber aDouble) { IComplexNDArray linear = linearView(); for (int i = 0; i < linear.length(); i++) { linear.putScalar(i, aDouble); } } /** * Get whole rows from the passed indices. * * @param rindices */ @Override public IComplexNDArray getRows(int[] rindices) { INDArray rows = Nd4j.create(rindices.length, columns()); for (int i = 0; i < rindices.length; i++) { rows.putRow(i, getRow(rindices[i])); } return (IComplexNDArray) rows; } @Override public IComplexNDArray put(INDArrayIndex[] indices, IComplexNumber element) { return put(indices, Nd4j.scalar(element)); } @Override public IComplexNDArray put(INDArrayIndex[] indices, IComplexNDArray element) { super.put(indices,element); return this; } @Override protected INDArray create(int[] shape, char ordering) { return Nd4j.createComplex(shape, ordering); } @Override public IComplexNDArray put(INDArrayIndex[] indices, Number element) { return put(indices, Nd4j.scalar(element)); } @Override public IComplexNDArray putScalar(int i, IComplexNumber value) { int[] dimensions = Shape.ind2sub(this, i); return putScalar(dimensions,value); } @Override protected IComplexNDArray create(DataBuffer buffer) { return Nd4j.createComplex(buffer, new int[]{1, (int) buffer.length()}); } @Override protected IComplexNDArray create(int rows, int length) { return create(new int[]{rows,length}); } @Override protected IComplexNDArray create(DataBuffer data,int[] shape,int offset) { return Nd4j.createComplex(data, shape, offset); } protected IComplexNDArray create(INDArray baseNDArray) { return Nd4j.createComplex(baseNDArray); } /** * Get the vector along a particular dimension * * @param index the index of the vector to get * @param dimension the dimension to getScalar the vector from * @return the vector along a particular dimension */ @Override public IComplexNDArray vectorAlongDimension(int index, int dimension) { return (IComplexNDArray) super.vectorAlongDimension(index,dimension); } /** * Cumulative sum along a dimension * * @param dimension the dimension to perform cumulative sum along * @return the cumulative sum along the specified dimension */ @Override public IComplexNDArray cumsumi(int dimension) { if (isVector()) { IComplexNumber s = Nd4j.createDouble(0, 0); for (int i = 0; i < length; i++) { s.addi(getComplex(i)); putScalar(i, s); } } else if (dimension == Integer.MAX_VALUE || dimension == shape.length - 1) { IComplexNDArray flattened = ravel().dup(); IComplexNumber prevVal = flattened.getComplex(0); for (int i = 1; i < flattened.length(); i++) { IComplexNumber d = prevVal.add((flattened.getComplex(i))); flattened.putScalar(i, d); prevVal = d; } return flattened; } else { for (int i = 0; i < vectorsAlongDimension(dimension); i++) { IComplexNDArray vec = vectorAlongDimension(i, dimension); vec.cumsumi(0); } } return this; } /** * Dimshuffle: an extension of permute that adds the ability * to broadcast various dimensions. *

* See theano for more examples. * This will only accept integers and xs. *

* An x indicates a dimension should be broadcasted rather than permuted. * * @param rearrange the dimensions to swap to * @return the newly permuted array */ @Override public IComplexNDArray dimShuffle(Object[] rearrange, int[] newOrder, boolean[] broadCastable) { return (IComplexNDArray) super.dimShuffle(rearrange,newOrder,broadCastable); } /** * Cumulative sum along a dimension (in place) * * @param dimension the dimension to perform cumulative sum along * @return the cumulative sum along the specified dimension */ @Override public IComplexNDArray cumsum(int dimension) { return dup().cumsumi(dimension); } /** * Assign all of the elements in the given * ndarray to this nedarray * * @param arr the elements to assign * @return this */ @Override public INDArray assign(INDArray arr) { return assign((IComplexNDArray) arr); } @Override public IComplexNDArray putScalar(int i, double value) { return put(i, Nd4j.scalar(value)); } @Override public INDArray putScalar(int[] i, double value) { super.putScalar(i, value); return putScalar(i, Nd4j.createComplexNumber(value, 0)); } @Override public IComplexNDArray putScalar(int[] indexes, IComplexNumber complexNumber) { int ix = offset; for (int i = 0; i < shape.length; i++) { if(indexes[i] >= size(i)) throw new IllegalArgumentException("Illegal index " + i + " size at this index is " + size(i)); ix += indexes[i] * stride[i]; } data.put(ix, complexNumber.asFloat().realComponent().doubleValue()); data.put(ix + 1, complexNumber.asFloat().imaginaryComponent().doubleValue()); return this; } /** * Negate each element. */ @Override public IComplexNDArray neg() { return dup().negi(); } /** * Negate each element (in-place). */ @Override public IComplexNDArray negi() { return (IComplexNDArray) Transforms.neg(this); } @Override public IComplexNDArray rdiv(Number n) { return rdiv(n, this); } @Override public IComplexNDArray rdivi(Number n) { return rdivi(n, this); } @Override public IComplexNDArray rsub(Number n) { return rsub(n, this); } @Override public IComplexNDArray rsubi(Number n) { return rsubi(n, this); } @Override public IComplexNDArray div(Number n) { return dup().divi(n); } @Override public IComplexNDArray divi(Number n) { return divi(Nd4j.complexScalar(n)); } @Override public IComplexNDArray mul(Number n) { return dup().muli(n); } @Override public IComplexNDArray muli(Number n) { return muli(Nd4j.complexScalar(n)); } @Override public IComplexNDArray sub(Number n) { return dup().subi(n); } @Override public IComplexNDArray subi(Number n) { return subi(Nd4j.complexScalar(n)); } @Override public IComplexNDArray add(Number n) { return dup().addi(n); } @Override public IComplexNDArray addi(Number n) { return addi(Nd4j.complexScalar(n)); } /** * Returns a subset of this array based on the specified * indexes * * @param indexes the indexes in to the array * @return a view of the array with the specified indices */ @Override public IComplexNDArray get(INDArrayIndex... indexes) { return (IComplexNDArray) super.get(indexes); } @Override public IComplexNDArray cond(Condition condition) { return dup().condi(condition); } @Override public IComplexNDArray condi(Condition condition) { IComplexNDArray linear = linearView(); for (int i = 0; i < length(); i++) { boolean met = condition.apply(linear.getComplex(i)); IComplexNumber put = Nd4j.createComplexNumber(met ? 1 : 0, 0); linear.putScalar(i, put); } return this; } /** * Get whole columns from the passed indices. * * @param cindices */ @Override public IComplexNDArray getColumns(int[] cindices) { return (IComplexNDArray) super.getColumns(cindices); } /** * Insert a row in to this array * Will throw an exception if this * ndarray is not a matrix * * @param row the row insert into * @param toPut the row to insert * @return this */ @Override public IComplexNDArray putRow(int row, INDArray toPut) { return (IComplexNDArray) super.putRow(row,toPut); } /** * Insert a column in to this array * Will throw an exception if this * ndarray is not a matrix * * @param column the column to insert * @param toPut the array to put * @return this */ @Override public IComplexNDArray putColumn(int column, INDArray toPut) { assert toPut.isVector() && toPut.length() == rows : "Illegal length for row " + toPut.length() + " should have been " + columns; IComplexNDArray r = getColumn(column); if (toPut instanceof IComplexNDArray) { IComplexNDArray putComplex = (IComplexNDArray) toPut; for (int i = 0; i < r.length(); i++) { IComplexNumber n = putComplex.getComplex(i); r.putScalar(i, n); } } else { for (int i = 0; i < r.length(); i++) r.putScalar(i, Nd4j.createDouble(toPut.getDouble(i), 0)); } return this; } /** * Returns the element at the specified row/column * This will throw an exception if the * * @param row the row of the element to return * @param column the row of the element to return * @return a scalar indarray of the element at this index */ @Override public IComplexNDArray getScalar(int row, int column) { return getScalar(new int[]{row, column}); } /** * Returns the element at the specified index * * @param i the index of the element to return * @return a scalar ndarray of the element at this index */ @Override public IComplexNDArray getScalar(int i) { return Nd4j.scalar(getComplex(i)); } /** * Inserts the element at the specified index * * @param i the index insert into * @param element a scalar ndarray * @return a scalar ndarray of the element at this index */ @Override public IComplexNDArray put(int i, INDArray element) { if (element == null) throw new IllegalArgumentException("Unable to insert null element"); assert element.isScalar() : "Unable to insert non scalar element"; if (element instanceof IComplexNDArray) { IComplexNDArray n1 = (IComplexNDArray) element; IComplexNumber n = n1.getComplex(0); put(i, n); } else putScalar(i, Nd4j.createDouble(element.getDouble(0), 0.0)); return this; } public void put(int i, IComplexNumber element) { int idx = linearIndex(i); data.put(idx, element.realComponent().doubleValue()); data.put(idx + 1, element.imaginaryComponent().doubleValue()); } /** * In place addition of a column vector * * @param columnVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray diviColumnVector(INDArray columnVector) { for (int i = 0; i < columns(); i++) { getColumn(i).divi(columnVector.getScalar(i)); } return this; } /** * In place addition of a column vector * * @param columnVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray divColumnVector(INDArray columnVector) { return dup().diviColumnVector(columnVector); } /** * In place addition of a column vector * * @param rowVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray diviRowVector(INDArray rowVector) { for (int i = 0; i < rows(); i++) { getRow(i).divi(rowVector.getScalar(i)); } return this; } /** * In place addition of a column vector * * @param rowVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray divRowVector(INDArray rowVector) { return dup().diviRowVector(rowVector); } /** * In place addition of a column vector * * @param columnVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray muliColumnVector(INDArray columnVector) { for (int i = 0; i < columns(); i++) { getColumn(i).muli(columnVector.getScalar(i)); } return this; } /** * In place addition of a column vector * * @param columnVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray mulColumnVector(INDArray columnVector) { return dup().muliColumnVector(columnVector); } /** * In place addition of a column vector * * @param rowVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray muliRowVector(INDArray rowVector) { for (int i = 0; i < rows(); i++) { getRow(i).muli(rowVector.getScalar(i)); } return this; } /** * In place addition of a column vector * * @param rowVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray mulRowVector(INDArray rowVector) { return dup().muliRowVector(rowVector); } /** * In place addition of a column vector * * @param columnVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray subiColumnVector(INDArray columnVector) { for (int i = 0; i < columns(); i++) { getColumn(i).subi(columnVector.getScalar(i)); } return this; } /** * In place addition of a column vector * * @param columnVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray subColumnVector(INDArray columnVector) { return dup().subiColumnVector(columnVector); } /** * In place addition of a column vector * * @param rowVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray subiRowVector(INDArray rowVector) { for (int i = 0; i < rows(); i++) { getRow(i).subi(rowVector.getScalar(i)); } return this; } /** * In place addition of a column vector * * @param rowVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray subRowVector(INDArray rowVector) { return dup().subiRowVector(rowVector); } /** * In place addition of a column vector * * @param columnVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray addiColumnVector(INDArray columnVector) { for (int i = 0; i < columns(); i++) { getColumn(i).addi(columnVector.getScalar(i)); } return this; } /** * In place addition of a column vector * * @param columnVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray addColumnVector(INDArray columnVector) { return dup().addiColumnVector(columnVector); } /** * In place addition of a column vector * * @param rowVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray addiRowVector(INDArray rowVector) { for (int i = 0; i < rows(); i++) { getRow(i).addi(rowVector.getScalar(i)); } return this; } /** * In place addition of a column vector * * @param rowVector the column vector to add * @return the result of the addition */ @Override public IComplexNDArray addRowVector(INDArray rowVector) { return dup().addiRowVector(rowVector); } /** * Perform a copy matrix multiplication * * @param other the other matrix to perform matrix multiply with * @return the result of the matrix multiplication */ @Override public IComplexNDArray mmul(INDArray other) { return (IComplexNDArray) super.mmul(other); } /** * Perform an copy matrix multiplication * * @param other the other matrix to perform matrix multiply with * @param result the result ndarray * @return the result of the matrix multiplication */ @Override public IComplexNDArray mmul(INDArray other, INDArray result) { return dup().mmuli(other, result); } /** * in place (element wise) division of two matrices * * @param other the second ndarray to divide * @return the result of the divide */ @Override public IComplexNDArray div(INDArray other) { return dup().divi(other); } /** * copy (element wise) division of two matrices * * @param other the second ndarray to divide * @param result the result ndarray * @return the result of the divide */ @Override public IComplexNDArray div(INDArray other, INDArray result) { return dup().divi(other, result); } /** * copy (element wise) multiplication of two matrices * * @param other the second ndarray to multiply * @return the result of the addition */ @Override public IComplexNDArray mul(INDArray other) { return dup().muli(other); } /** * copy (element wise) multiplication of two matrices * * @param other the second ndarray to multiply * @param result the result ndarray * @return the result of the multiplication */ @Override public IComplexNDArray mul(INDArray other, INDArray result) { return dup().muli(other, result); } /** * copy subtraction of two matrices * * @param other the second ndarray to subtract * @return the result of the addition */ @Override public IComplexNDArray sub(INDArray other) { return dup().subi(other); } /** * copy subtraction of two matrices * * @param other the second ndarray to subtract * @param result the result ndarray * @return the result of the subtraction */ @Override public IComplexNDArray sub(INDArray other, INDArray result) { return dup().subi(other, result); } /** * copy addition of two matrices * * @param other the second ndarray to add * @return the result of the addition */ @Override public IComplexNDArray add(INDArray other) { return dup().addi(other); } /** * copy addition of two matrices * * @param other the second ndarray to add * @param result the result ndarray * @return the result of the addition */ @Override public IComplexNDArray add(INDArray other, INDArray result) { return dup().addi(other, result); } /** * Perform an copy matrix multiplication * * @param other the other matrix to perform matrix multiply with * @return the result of the matrix multiplication */ @Override public IComplexNDArray mmuli(INDArray other) { return mmuli(other, this); } /** * Perform an copy matrix multiplication * * @param other the other matrix to perform matrix multiply with * @param result the result ndarray * @return the result of the matrix multiplication */ @Override public IComplexNDArray mmuli(INDArray other, INDArray result) { IComplexNDArray otherArray = (IComplexNDArray) other; IComplexNDArray resultArray = (IComplexNDArray) result; if (other.shape().length > 2) { for (int i = 0; i < other.slices(); i++) { resultArray.putSlice(i, slice(i).mmul(otherArray.slice(i))); } return resultArray; } LinAlgExceptions.assertMultiplies(this, other); if (other.isScalar()) { return muli(otherArray.getComplex(0), resultArray); } if (isScalar()) { return otherArray.muli(getComplex(0), resultArray); } /* check sizes and resize if necessary */ //assertMultipliesWith(other); if (result == this || result == other) { /* actually, blas cannot do multiplications in-place. Therefore, we will fake by * allocating a temporary object on the side and copy the result later. */ IComplexNDArray temp = Nd4j.createComplex(resultArray.shape()); if (otherArray.columns() == 1) { Nd4j.getBlasWrapper().level2().gemv(BlasBufferUtil.getCharForTranspose(temp),BlasBufferUtil.getCharForTranspose(this),Nd4j.UNIT,this,otherArray,Nd4j.ZERO,temp); } else { Nd4j.getBlasWrapper().level3().gemm(BlasBufferUtil.getCharForTranspose(temp),BlasBufferUtil.getCharForTranspose(this),BlasBufferUtil.getCharForTranspose(other),Nd4j.UNIT,this,otherArray,Nd4j.ZERO,temp); } Nd4j.getBlasWrapper().copy(temp, resultArray); } else { if (otherArray.columns() == 1) { Nd4j.getBlasWrapper().level2().gemv( BlasBufferUtil.getCharForTranspose(resultArray) ,BlasBufferUtil.getCharForTranspose(this) ,Nd4j.UNIT ,this ,otherArray ,Nd4j.ZERO ,resultArray); } else { Nd4j.getBlasWrapper().level3().gemm( BlasBufferUtil.getCharForTranspose(resultArray) ,BlasBufferUtil.getCharForTranspose(this) ,BlasBufferUtil.getCharForTranspose(other) ,Nd4j.UNIT ,this ,otherArray ,Nd4j.ZERO ,resultArray); } } return resultArray; } @Override public int secondaryStride() { return super.secondaryStride() / 2; } /** * in place (element wise) division of two matrices * * @param other the second ndarray to divide * @return the result of the divide */ @Override public IComplexNDArray divi(INDArray other) { return divi(other, this); } /** * in place (element wise) division of two matrices * * @param other the second ndarray to divide * @param result the result ndarray * @return the result of the divide */ @Override public IComplexNDArray divi(INDArray other, INDArray result) { IComplexNDArray cOther = (IComplexNDArray) other; IComplexNDArray cResult = (IComplexNDArray) result; IComplexNDArray linear = linearView(); IComplexNDArray cOtherLinear = cOther.linearView(); IComplexNDArray cResultLinear = cResult.linearView(); if (other.isScalar()) return divi(cOther.getComplex(0), result); IComplexNumber c = Nd4j.createComplexNumber(0, 0); IComplexNumber d = Nd4j.createComplexNumber(0, 0); for (int i = 0; i < length; i++) cResultLinear.putScalar(i, linear.getComplex(i, c).divi(cOtherLinear.getComplex(i, d))); return cResult; } /** * in place (element wise) multiplication of two matrices * * @param other the second ndarray to multiply * @return the result of the addition */ @Override public IComplexNDArray muli(INDArray other) { return muli(other, this); } /** * in place (element wise) multiplication of two matrices * * @param other the second ndarray to multiply * @param result the result ndarray * @return the result of the multiplication */ @Override public IComplexNDArray muli(INDArray other, INDArray result) { IComplexNDArray cOther = (IComplexNDArray) other; IComplexNDArray cResult = (IComplexNDArray) result; IComplexNDArray linear = linearView(); IComplexNDArray cOtherLinear = cOther.linearView(); IComplexNDArray cResultLinear = cResult.linearView(); if (other.isScalar()) return muli(cOther.getComplex(0), result); IComplexNumber c = Nd4j.createComplexNumber(0, 0); IComplexNumber d = Nd4j.createComplexNumber(0, 0); for (int i = 0; i < length; i++) cResultLinear.putScalar(i, linear.getComplex(i, c).muli(cOtherLinear.getComplex(i, d))); return cResult; } /** * in place subtraction of two matrices * * @param other the second ndarray to subtract * @return the result of the addition */ @Override public IComplexNDArray subi(INDArray other) { return subi(other, this); } /** * in place subtraction of two matrices * * @param other the second ndarray to subtract * @param result the result ndarray * @return the result of the subtraction */ @Override public IComplexNDArray subi(INDArray other, INDArray result) { IComplexNDArray cOther = (IComplexNDArray) other; IComplexNDArray cResult = (IComplexNDArray) result; if (other.isScalar()) return subi(cOther.getComplex(0), result); if (result == this) Nd4j.getBlasWrapper().axpy(Nd4j.NEG_UNIT, cOther, cResult); else if (result == other) { if (data.dataType() == (DataBuffer.Type.DOUBLE)) { Nd4j.getBlasWrapper().scal(Nd4j.NEG_UNIT.asDouble(), cResult); Nd4j.getBlasWrapper().axpy(Nd4j.UNIT, this, cResult); } else { Nd4j.getBlasWrapper().scal(Nd4j.NEG_UNIT.asFloat(), cResult); Nd4j.getBlasWrapper().axpy(Nd4j.UNIT, this, cResult); } } else { Nd4j.getBlasWrapper().copy(this, result); Nd4j.getBlasWrapper().axpy(Nd4j.NEG_UNIT, cOther, cResult); } return cResult; } /** * in place addition of two matrices * * @param other the second ndarray to add * @return the result of the addition */ @Override public IComplexNDArray addi(INDArray other) { return addi(other, this); } /** * in place addition of two matrices * * @param other the second ndarray to add * @param result the result ndarray * @return the result of the addition */ @Override public IComplexNDArray addi(INDArray other, INDArray result) { IComplexNDArray cOther = (IComplexNDArray) other; IComplexNDArray cResult = (IComplexNDArray) result; if (cOther.isScalar()) { return cResult.addi(cOther.getComplex(0), result); } if (isScalar()) { return cOther.addi(getComplex(0), result); } if (result == this) { Nd4j.getBlasWrapper().axpy(Nd4j.UNIT, cOther, cResult); } else if (result == other) { Nd4j.getBlasWrapper().axpy(Nd4j.UNIT, this, cResult); } else { INDArray resultLinear = result.linearView(); INDArray otherLinear = other.linearView(); INDArray linear = linearView(); for (int i = 0; i < resultLinear.length(); i++) { resultLinear.putScalar(i, otherLinear.getDouble(i) + linear.getDouble(i)); } } return (IComplexNDArray) result; } @Override public IComplexNDArray rdiv(IComplexNumber n, INDArray result) { return dup().rdivi(n, result); } @Override public IComplexNDArray rdivi(IComplexNumber n, INDArray result) { IComplexNDArray cResult = (IComplexNDArray) result; IComplexNDArray cResultLinear = cResult.linearView(); for (int i = 0; i < length; i++) cResultLinear.putScalar(i, n.div(getComplex(i))); return cResult; } @Override public IComplexNDArray rsub(IComplexNumber n, INDArray result) { return dup().rsubi(n, result); } @Override public IComplexNDArray rsubi(IComplexNumber n, INDArray result) { IComplexNDArray cResult = (IComplexNDArray) result; IComplexNDArray cResultLinear = cResult.linearView(); IComplexNDArray thiLinear = linearView(); for (int i = 0; i < length; i++) cResultLinear.putScalar(i, n.sub(thiLinear.getComplex(i))); return cResult; } @Override public IComplexNDArray div(IComplexNumber n, INDArray result) { return dup().divi(n, result); } @Override public IComplexNDArray divi(IComplexNumber n, INDArray result) { IComplexNDArray cResult = (IComplexNDArray) result; IComplexNDArray cResultLinear = cResult.linearView(); IComplexNDArray thisLinear = linearView(); for (int i = 0; i < length; i++) cResultLinear.putScalar(i, thisLinear.getComplex(i).div(n)); return cResult; } @Override public IComplexNDArray mul(IComplexNumber n, INDArray result) { return dup().muli(n, result); } @Override public IComplexNDArray muli(IComplexNumber n, INDArray result) { IComplexNDArray cResult = (IComplexNDArray) result; IComplexNDArray cResultLinear = cResult.linearView(); IComplexNDArray thiLinear = linearView(); for (int i = 0; i < length; i++) cResultLinear.putScalar(i, thiLinear.getComplex(i).mul(n)); return cResult; } @Override public IComplexNDArray sub(IComplexNumber n, INDArray result) { return dup().subi(n, result); } @Override public IComplexNDArray subi(IComplexNumber n, INDArray result) { IComplexNDArray cResult = (IComplexNDArray) result; IComplexNDArray cResultLinear = cResult.linearView(); IComplexNDArray linear = linearView(); for (int i = 0; i < length; i++) cResultLinear.putScalar(i, linear.getComplex(i).sub(n)); return cResult; } @Override public IComplexNDArray add(IComplexNumber n, INDArray result) { return dup().addi(n, result); } @Override public IComplexNDArray addi(IComplexNumber n, INDArray result) { IComplexNDArray linear = linearView(); IComplexNDArray cResult = (IComplexNDArray) result.linearView(); for (int i = 0; i < length(); i++) { cResult.putScalar(i, linear.getComplex(i).add(n)); } return (IComplexNDArray) result; } @Override public IComplexNDArray rdiv(IComplexNumber n) { return dup().rdivi(n, this); } @Override public IComplexNDArray rdivi(IComplexNumber n) { return rdivi(n, this); } @Override public IComplexNDArray rsub(IComplexNumber n) { return rsub(n, this); } @Override public IComplexNDArray rsubi(IComplexNumber n) { return rsubi(n, this); } @Override public IComplexNDArray div(IComplexNumber n) { return div(n, this); } @Override public IComplexNDArray divi(IComplexNumber n) { return divi(n, this); } @Override public IComplexNDArray mul(IComplexNumber n) { return dup().muli(n); } @Override public IComplexNDArray muli(IComplexNumber n) { return muli(n, this); } @Override public IComplexNDArray sub(IComplexNumber n) { return dup().subi(n); } @Override public IComplexNDArray subi(IComplexNumber n) { return subi(n, this); } @Override public IComplexNDArray add(IComplexNumber n) { return dup().addi(n); } @Override public IComplexNDArray addi(IComplexNumber n) { return addi(n, this); } @Override public IComplexNDArray putReal(int rowIndex, int columnIndex, float value) { return putReal(new int[]{rowIndex, columnIndex}, value); } @Override public IComplexNDArray putReal(int[] indices, float value) { return putReal(indices, (double) value); } @Override public IComplexNDArray putImag(int[] indices, float value) { return putImag(indices, (double) value); } @Override public IComplexNDArray putReal(int[] indices, double value) { int ix = offset; for (int i = 0; i < indices.length; i++) ix += indices[i] * stride[i]; data.put(ix, value); return this; } @Override public IComplexNDArray putImag(int[] indices, double value) { int ix = offset; for (int i = 0; i < indices.length; i++) ix += indices[i] * stride[i]; data.put(ix + 1, value); return this; } @Override public IComplexNDArray putImag(int rowIndex, int columnIndex, float value) { return putReal(new int[]{rowIndex, columnIndex}, value); } @Override public IComplexNDArray put(int[] indexes, float value) { return put(indexes, (double) value); } @Override public IComplexNDArray neqi(IComplexNumber other) { IComplexNDArray ret = linearView(); for (int i = 0; i < length(); i++) { IComplexNumber num = ret.getComplex(i); ret.putScalar(i, num.neqc(other)); } return this; } @Override public IComplexNDArray neq(IComplexNumber other) { return dup().neqi(other); } @Override public IComplexNDArray lt(IComplexNumber other) { return dup().lti(other); } @Override public IComplexNDArray lti(IComplexNumber other) { IComplexNDArray ret = linearView(); for (int i = 0; i < length(); i++) { IComplexNumber num = ret.getComplex(i); ret.putScalar(i, num.lt(other)); } return this; } @Override public IComplexNDArray eq(IComplexNumber other) { return dup().eqi(other); } @Override public IComplexNDArray eqi(IComplexNumber other) { return dup().eqi(other); } @Override public IComplexNDArray gt(IComplexNumber other) { return dup().gti(other); } @Override public IComplexNDArray gti(IComplexNumber other) { IComplexNDArray ret = linearView(); for (int i = 0; i < length(); i++) { IComplexNumber num = ret.getComplex(i); ret.putScalar(i, num.gt(other)); } return this; } /** * Return transposed copy of this matrix. */ @Override public IComplexNDArray transposei() { return Nd4j.createComplex(super.transposei()); } /** * Return transposed copy of this matrix. */ @Override public IComplexNDArray transpose() { return transposei(); } @Override public IComplexNDArray addi(IComplexNumber n, IComplexNDArray result) { IComplexNDArray linear = linearView(); IComplexNDArray cResult = result.linearView(); for (int i = 0; i < length(); i++) { cResult.putScalar(i, linear.getComplex(i).addi(n)); } return result; } @Override public IComplexNDArray subi(IComplexNumber n, IComplexNDArray result) { IComplexNDArray linear = linearView(); IComplexNDArray cResult = result.linearView(); for (int i = 0; i < length(); i++) { cResult.putScalar(i, linear.getComplex(i).subi(n)); } return result; } @Override public IComplexNDArray muli(IComplexNumber n, IComplexNDArray result) { IComplexNDArray linear = linearView(); IComplexNDArray cResult = result.linearView(); for (int i = 0; i < length(); i++) { IComplexNumber n3 = linear.getComplex(i); cResult.putScalar(i, n3.mul(n)); } return result; } @Override public IComplexNDArray divi(IComplexNumber n, IComplexNDArray result) { IComplexNDArray linear = linearView(); IComplexNDArray cResult = result.linearView(); for (int i = 0; i < length(); i++) { cResult.putScalar(i, linear.getComplex(i).div(n)); } return result; } @Override public IComplexNDArray rsubi(IComplexNumber n, IComplexNDArray result) { IComplexNDArray linear = linearView(); IComplexNDArray cResult = result.linearView(); for (int i = 0; i < length(); i++) { cResult.putScalar(i, n.sub(linear.getComplex(i))); } return result; } @Override public IComplexNDArray rdivi(IComplexNumber n, IComplexNDArray result) { IComplexNDArray linear = linearView(); IComplexNDArray cResult = result.linearView(); for (int i = 0; i < length(); i++) { cResult.putScalar(i, n.div(linear.getComplex(i))); } return result; } /** * Reshape the ndarray in to the specified dimensions, * possible errors being thrown for invalid shapes * * @param shape * @return */ @Override public IComplexNDArray reshape(int...shape) { return (IComplexNDArray) super.reshape(shape); } @Override public IComplexNDArray reshape(char order, int... newShape) { return (IComplexNDArray) super.reshape(order, newShape); } @Override public IComplexNDArray reshape(char order, int rows, int columns) { return (IComplexNDArray) super.reshape(order, rows, columns); } /** * Set the value of the ndarray to the specified value * * @param value the value to assign * @return the ndarray with the values */ @Override public IComplexNDArray assign(Number value) { IComplexNDArray one = linearView(); for (int i = 0; i < one.length(); i++) one.putScalar(i, Nd4j.createDouble(value.doubleValue(), 0)); return this; } /** * Reverse division * * @param other the matrix to divide from * @return */ @Override public IComplexNDArray rdiv(INDArray other) { return dup().rdivi(other); } /** * Reverse divsion (in place) * * @param other * @return */ @Override public IComplexNDArray rdivi(INDArray other) { return rdivi(other, this); } /** * Reverse division * * @param other the matrix to subtract from * @param result the result ndarray * @return */ @Override public IComplexNDArray rdiv(INDArray other, INDArray result) { return dup().rdivi(other, result); } /** * Reverse division (in-place) * * @param other the other ndarray to subtract * @param result the result ndarray * @return the ndarray with the operation applied */ @Override public IComplexNDArray rdivi(INDArray other, INDArray result) { return (IComplexNDArray) other.divi(this, result); } /** * Reverse subtraction * * @param other the matrix to subtract from * @param result the result ndarray * @return */ @Override public IComplexNDArray rsub(INDArray other, INDArray result) { return dup().rsubi(other, result); } /** * @param other * @return */ @Override public IComplexNDArray rsub(INDArray other) { return dup().rsubi(other); } /** * @param other * @return */ @Override public IComplexNDArray rsubi(INDArray other) { return rsubi(other, this); } /** * Reverse subtraction (in-place) * * @param other the other ndarray to subtract * @param result the result ndarray * @return the ndarray with the operation applied */ @Override public IComplexNDArray rsubi(INDArray other, INDArray result) { return (IComplexNDArray) other.subi(this, result); } public IComplexNumber max() { IComplexNDArray reshape = ravel(); IComplexNumber max = reshape.getComplex(0); for (int i = 1; i < reshape.length(); i++) { IComplexNumber curr = reshape.getComplex(i); double val = curr.realComponent().doubleValue(); if (val > curr.realComponent().doubleValue()) max = curr; } return max; } public IComplexNumber min() { IComplexNDArray reshape = ravel(); IComplexNumber min = reshape.getComplex(0); for (int i = 1; i < reshape.length(); i++) { IComplexNumber curr = reshape.getComplex(i); double val = curr.realComponent().doubleValue(); if (val < curr.realComponent().doubleValue()) min = curr; } return min; } /** * Reshape the matrix. Number of elements must not change. * * @param newRows * @param newColumns */ @Override public IComplexNDArray reshape(int newRows, int newColumns) { return reshape(new int[]{newRows, newColumns}); } /** * Get the specified column * * @param c */ @Override public IComplexNDArray getColumn(int c) { return (IComplexNDArray) super.getColumn(c); } /** * Get a copy of a row. * * @param r */ @Override public IComplexNDArray getRow(int r) { return (IComplexNDArray) super.getRow(r); } /** * Compare two matrices. Returns true if and only if other is also a * ComplexDoubleMatrix which has the same size and the maximal absolute * difference in matrix elements is smaller than 1e-6. * * @param o */ @Override public boolean equals(Object o) { IComplexNDArray n = null; if (!(o instanceof IComplexNDArray)) return false; if (n == null) n = (IComplexNDArray) o; //epsilon equals if (isScalar() && n.isScalar()) { IComplexNumber c = n.getComplex(0); return FastMath.abs(getComplex(0).sub(c).realComponent().doubleValue()) < Nd4j.EPS_THRESHOLD; } else if (isVector() && n.isVector()) { for (int i = 0; i < length; i++) { IComplexNumber nComplex = n.getComplex(i); IComplexNumber thisComplex = getComplex(i); if(!nComplex.equals(thisComplex)) return false; } return true; } if (!Shape.shapeEquals(shape(), n.shape())) return false; //epsilon equals if (isScalar()) { IComplexNumber c = n.getComplex(0); return getComplex(0).sub(c).absoluteValue().doubleValue() < Nd4j.EPS_THRESHOLD; } else if (isVector()) { for (int i = 0; i < length; i++) { IComplexNumber curr = getComplex(i); IComplexNumber comp = n.getComplex(i); if(!curr.equals(comp)) return false; } return true; } for (int i = 0; i < slices(); i++) { IComplexNDArray sliceI = slice(i); IComplexNDArray nSliceI = n.slice(i); if (!sliceI.equals(nSliceI)) return false; } return true; } /** * Broadcasts this ndarray to be the specified shape * * @param shape the new shape of this ndarray * @return the broadcasted ndarray */ @Override public IComplexNDArray broadcast(int[] shape) { return (IComplexNDArray) super.broadcast(shape); } /** * Returns a scalar (individual element) * of a scalar ndarray * * @return the individual item in this ndarray */ @Override public Object element() { if (!isScalar()) throw new IllegalStateException("Unable to getScalar the element of a non scalar"); int idx = linearIndex(0); return Nd4j.createDouble(data.getDouble(idx), data.getDouble(idx + 1)); } /** * See: http://www.mathworks.com/help/matlab/ref/permute.html * * @param rearrange the dimensions to swap to * @return the newly permuted array */ @Override public IComplexNDArray permute(int[] rearrange) { return (IComplexNDArray) super.permute(rearrange); } /** * Flattens the array for linear indexing * * @return the flattened version of this array */ @Override public IComplexNDArray ravel() { IComplexNDArray ret = Nd4j.createComplex(length, ordering); IComplexNDArray linear = linearView(); for(int i = 0; i < length(); i++) { ret.putScalar(i,linear.getComplex(i)); } return ret; } /** * Generate string representation of the matrix. */ @Override public String toString() { if (isScalar()) { return element().toString(); } else if (isVector()) { StringBuilder sb = new StringBuilder(); sb.append("["); int numElementsToPrint = Nd4j.MAX_ELEMENTS_PER_SLICE < 0 ? length : Nd4j.MAX_ELEMENTS_PER_SLICE; for (int i = 0; i < length; i++) { sb.append(getComplex(i)); if (i < length - 1) sb.append(" ,"); if (i >= numElementsToPrint) { int numElementsLeft = length - i; //set towards the end of the buffer if (numElementsLeft > numElementsToPrint) { i += numElementsLeft - numElementsToPrint - 1; sb.append(" ,... ,"); } } } sb.append("]\n"); return sb.toString(); } StringBuilder sb = new StringBuilder(); int length = shape[0]; sb.append("["); if (length > 0) { sb.append(slice(0).toString()); int slices = Nd4j.MAX_SLICES_TO_PRINT > 0 ? Nd4j.MAX_SLICES_TO_PRINT : slices(); if (slices > slices()) slices = slices(); for (int i = 1; i < slices; i++) { sb.append(slice(i).toString()); if (i < length - 1) sb.append(" ,"); } } sb.append("]\n"); return sb.toString(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy