All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.learning.AdaDelta Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
package org.nd4j.linalg.learning;

import lombok.Data;
import lombok.NoArgsConstructor;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.ops.transforms.Transforms;

import java.io.Serializable;

/**
 * http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf
 *
 * Ada delta updater. More robust adagrad that keeps track of a moving window
 * average of the gradient rather than the every decaying learning rates of adagrad
 *
 * @author Adam Gibson
 */
@Data
@NoArgsConstructor
public class AdaDelta implements Serializable,GradientUpdater {
    private INDArray msg;
    private INDArray msdx;
    private double rho = 0.95;


    public AdaDelta(double rho) {
        this.rho = rho;
    }

    @Override
    public void update(Object... args) {
        //no op
    }

    /**
     * Get the updated gradient for the given gradient
     * and also update the state of ada delta.
     * @param gradient the gradient to get the
     *                 updated gradient for
     * @param iteration
     * @return the update gradient
     */
    @Override
    public INDArray getGradient(INDArray gradient, int iteration) {
        if(msg == null)
            msg = Nd4j.zeros(gradient.shape());

        if(msdx == null)
            msdx = Nd4j.zeros(gradient.shape());

        msg.muli(rho);
        msg.addi(1 - rho).muli(gradient.mul(gradient));
        // modifiedGradient = sqrt(modifiedGradient^2)_t-1 / sqrt(avgSquaredRawGradient^2)_t * rawGradient
        INDArray ret = Transforms.sqrt(msdx.add(Nd4j.EPS_THRESHOLD))
        		.divi(Transforms.sqrt(msg.add(Nd4j.EPS_THRESHOLD))).muli(gradient);
        msdx.muli(rho);
        INDArray dxSquared = ret.mul(ret);
        msdx.addi(dxSquared.muli(1 - rho));

        return ret;
    }

    @Override
    public GradientUpdaterAggregator getAggregator(boolean addThis){
        AdaDeltaAggregator ag = new AdaDeltaAggregator();
        if(addThis) ag.aggregate(this);
        return ag;
    }

    public static class AdaDeltaAggregator implements GradientUpdaterAggregator {
        private INDArray msgSum;
        private INDArray msdxSum;
        private double rhoSum;
        private int count = 0;

        @Override
        public GradientUpdater getUpdater() {
            AdaDelta adaDelta = new AdaDelta(rhoSum /count);
            adaDelta.setMsg(msgSum.div(count));
            adaDelta.setMsdx(msdxSum.div(count));
            adaDelta.setRho(rhoSum/count);
            return adaDelta;
        }

        @Override
        public void aggregate(GradientUpdater updater) {
            if(!(updater instanceof AdaDelta)) throw new UnsupportedOperationException("Cannot aggregate AdaDelta with updater: " + updater);
            AdaDelta adaDelta = (AdaDelta)updater;
            if(msgSum ==null){
                msgSum = adaDelta.msg.dup();
                msdxSum = adaDelta.msdx.dup();
                rhoSum = adaDelta.rho;
            } else {
                msgSum.addi(adaDelta.msg);
                msdxSum.addi(adaDelta.msdx);
                rhoSum += adaDelta.rho;
            }
            count++;
        }

        @Override
        public GradientUpdaterAggregator combine(GradientUpdaterAggregator other) {
            if(!(other instanceof AdaDeltaAggregator))
                throw new IllegalArgumentException("Cannot combine AdaDeltaAggregator with aggregator: " + other);
            AdaDeltaAggregator aggregator = (AdaDeltaAggregator)other;
            msgSum.addi(aggregator.msgSum);
            msdxSum.addi(aggregator.msdxSum);
            rhoSum += aggregator.rhoSum;
            count += aggregator.count;
            return this;
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy