All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.api.blas.Level2 Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
package org.nd4j.linalg.api.blas;

import org.nd4j.linalg.api.complex.IComplexNDArray;
import org.nd4j.linalg.api.complex.IComplexNumber;
import org.nd4j.linalg.api.ndarray.INDArray;

/**
 *
 * Level 2 blas implementations.
 * Incx and other parameters are inferred
 * from the given ndarrays.
 *
 * To avoid boxing, doubles are used in place of normal numbers.
 * The underlying implementation will call the proper data type.
 *
 * This is a fortran 95 style api that gives us the efficiency
 * and flexibility of the fortran 77 api
 *
 * Credit to:
 * https://www.ualberta.ca/AICT/RESEARCH/LinuxClusters/doc/mkl81/mklqref/blaslev2.htm
 *
 * for the descriptions
 *
 * @author Adam Gibson
 */
public interface Level2 {
    /**
     * gemv computes a matrix-vector product using a general matrix and performs one of the following matrix-vector operations: 
     y := alpha*a*x + beta*y  for trans = 'N'or'n'; 
     y := alpha*a'*x + beta*y  for trans = 'T'or't'; 
     y := alpha*conjg(a')*x + beta*y  for trans = 'C'or'c'. 
     Here a is an m-by-n band matrix, x and y are vectors, alpha and beta are scalars.
     * @param order
     * @param transA
     * @param alpha
     * @param A
     * @param X
     * @param beta
     * @param Y
     */
    void gemv( char order,
               char transA,
               double alpha,  INDArray A,
               INDArray X, double beta,
               INDArray Y);

    /**
     * gemv computes a matrix-vector product using a general matrix and performs one of the following matrix-vector operations:
     y := alpha*a*x + beta*y  for trans = 'N'or'n';
     y := alpha*a'*x + beta*y  for trans = 'T'or't';
     y := alpha*conjg(a')*x + beta*y  for trans = 'C'or'c'.
     Here a is an m-by-n band matrix, x and y are vectors, alpha and beta are scalars.
     * @param order
     * @param transA
     * @param alpha
     * @param A
     * @param X
     * @param beta
     * @param Y
     */
    void gemv( char order,
               char transA,
               IComplexNumber alpha,  IComplexNDArray A,
               IComplexNDArray X, IComplexNumber beta,
               IComplexNDArray Y);

    /**
     * gbmv computes a matrix-vector product using a general band matrix and performs one of the following matrix-vector operations:
     y := alpha*a*x + beta*y  for trans = 'N'or'n';
     y := alpha*a'*x + beta*y  for trans = 'T'or't';
     y := alpha*conjg(a')*x + beta*y  for trans = 'C'or'c'.
     Here a is an m-by-n band matrix with ku superdiagonals and kl subdiagonals, x and y are vectors, alpha and beta are scalars.
     * @param order
     * @param TransA
     * @param KL
     * @param KU
     * @param alpha
     * @param A
     * @param X
     * @param beta
     * @param Y
     */
    void gbmv(char order,
              char TransA,
              int KL,  int KU,  double alpha,
              INDArray A,  INDArray X,
              double beta, INDArray Y);

    /**
     * gbmv computes a matrix-vector product using a general band matrix and performs one of the following matrix-vector operations:
     y := alpha*a*x + beta*y  for trans = 'N'or'n';
     y := alpha*a'*x + beta*y  for trans = 'T'or't';
     y := alpha*conjg(a')*x + beta*y  for trans = 'C'or'c'.
     Here a is an m-by-n band matrix with ku superdiagonals and kl subdiagonals, x and y are vectors, alpha and beta are scalars.
     * @param order
     * @param TransA
     * @param KL
     * @param KU
     * @param alpha
     * @param A
     * @param X
     * @param beta
     * @param Y
     */
    void gbmv(char order,
              char TransA,
              int KL,  int KU,  IComplexNumber alpha,
              IComplexNDArray A,  IComplexNDArray X,
              IComplexNumber beta, IComplexNDArray Y);


    /**
     *  performs a rank-1 update of a general m-by-n matrix a:
     a := alpha*x*y' + a.
     * @param order
     * @param alpha
     * @param X
     * @param Y
     * @param A
     */
    void ger( char order,
              double alpha,  INDArray X,
              INDArray Y, INDArray A);



    /**
     * performs a rank-1 update of a general m-by-n matrix a, without conjugation:
     a := alpha*x*y' + a.
     * @param order
     * @param alpha
     * @param X
     * @param Y
     * @param A
     */
    void geru( char order,
               IComplexNumber alpha,  IComplexNDArray X,
               IComplexNDArray Y, IComplexNDArray A);




    /**
     * performs a rank-1 update of a general m-by-n matrix a, without conjugation:
     a := alpha*x*y' + a.
     * @param order
     * @param alpha
     * @param X
     * @param Y
     * @param A
     */
    void hbmv(char order, char Uplo, IComplexNumber alpha, IComplexNDArray A, IComplexNDArray X, IComplexNumber beta, IComplexNDArray Y);
    /**
     * hemv computes a matrix-vector product using a Hermitian matrix:
     y := alpha*a*x + beta*y.
     Here a is an n-by-n Hermitian band matrix with k superdiagonals, x and y are n-element vectors, alpha and beta are scalars.
     * @param order
     * @param Uplo
     * @param alpha
     * @param A
     * @param X
     * @param beta
     * @param Y
     */
    void hemv(char order, char Uplo, IComplexNumber alpha, IComplexNDArray A, IComplexNDArray X, IComplexNumber beta, IComplexNDArray Y);
    /**
     * ?her2 performs a rank-2 update of an n-by-n Hermitian matrix a:
     a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a.
     * @param order
     * @param Uplo
     * @param alpha
     * @param X
     * @param Y
     * @param A
     */
    void her2(char order, char Uplo, IComplexNumber alpha, IComplexNDArray X, IComplexNDArray Y, IComplexNDArray A);
    /**
     * ?hpmv computes a matrix-vector product using a Hermitian packed matrix:
     y := alpha*a*x + beta*y.
     Here a is an n-by-n packed Hermitian matrix, x and y are n-element vectors, alpha and beta are scalars.
     * @param order
     * @param Uplo
     * @param N
     * @param alpha
     * @param Ap
     * @param X
     * @param beta
     * @param Y
     */
    void hpmv(char order, char Uplo, int N, IComplexNumber alpha, IComplexNDArray Ap, IComplexNDArray X, IComplexNumber beta, IComplexNDArray Y);

    /**
     * hpr2 performs a rank-2 update of an n-by-n packed Hermitian matrix a:
     a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a.
     * @param order
     * @param Uplo
     * @param alpha
     * @param X
     * @param Y
     * @param Ap
     */
    void hpr2(char order, char Uplo, IComplexNumber alpha, IComplexNDArray X, IComplexNDArray Y, IComplexNDArray Ap);

    /**
     * sbmv computes a matrix-vector product using a symmetric band matrix:
     y := alpha*a*x + beta*y.
     Here a is an n-by-n symmetric band matrix with k superdiagonals, x and y are n-element vectors, alpha and beta are scalars.
     * @param order
     * @param Uplo
     * @param alpha
     * @param A
     * @param X
     * @param beta
     * @param Y
     */
    void sbmv( char order,  char Uplo,
               double alpha,  INDArray A,
               INDArray X,
               double beta, INDArray Y);

    /**
     *
     * @param order
     * @param Uplo
     * @param alpha
     * @param Ap
     * @param X
     * @param beta
     * @param Y
     */
    void spmv( char order,  char Uplo,
               double alpha,  INDArray Ap,
               INDArray X,
               double beta, INDArray Y);

    /**
     * spr performs a rank-1 update of an n-by-n packed symmetric matrix a:
     a := alpha*x*x' + a. 
     * @param order
     * @param Uplo
     * @param alpha
     * @param X
     * @param Ap
     */
    void spr( char order,  char Uplo,
              double alpha,  INDArray X,
              INDArray Ap);

    /**
     * ?spr2 performs a rank-2 update of an n-by-n packed symmetric matrix a:
     a := alpha*x*y' + alpha*y*x' + a. 
     * @param order
     * @param Uplo
     * @param alpha
     * @param X
     * @param Y
     * @param A
     */
    void spr2(char order, char Uplo,
              double alpha, INDArray X,
              INDArray Y,INDArray A);

    /**
     * symv computes a matrix-vector product for a symmetric matrix:
     y := alpha*a*x + beta*y.
     Here a is an n-by-n symmetric matrix; x and y are n-element vectors, alpha and beta are scalars.
     * @param order
     * @param Uplo
     * @param alpha
     * @param A
     * @param X
     * @param beta
     * @param Y
     */
    void symv(char order, char Uplo,
              double alpha, INDArray A,
              INDArray X,
              double beta, INDArray Y);

    /**
     * syr performs a rank-1 update of an n-by-n symmetric matrix a:
     a := alpha*x*x' + a.
     * @param order
     * @param Uplo
     * @param N
     * @param alpha
     * @param X
     * @param A
     */
    void syr( char order,  char Uplo,
              int N,  double alpha,  INDArray X,
              INDArray A);

    /**
     *
     * @param order
     * @param Uplo
     * @param alpha
     * @param X
     * @param Y
     * @param A
     */
    void syr2( char order,  char Uplo,
               double alpha,  INDArray X,
              INDArray Y, INDArray A);

    /**
     * syr2 performs a rank-2 update of an n-by-n symmetric matrix a:
     a := alpha*x*y' + alpha*y*x' + a.
     * @param order
     * @param Uplo
     * @param TransA
     * @param Diag
     * @param A
     * @param X
     */
    void tbmv( char order,  char Uplo,
               char  TransA,  char  Diag,
               INDArray A,
               INDArray X);

    /**
     * ?tbsv solves a system of linear equations whose coefficients are in a triangular band matrix.
     * @param order
     * @param Uplo
     * @param TransA
     * @param Diag
     * @param A
     * @param X
     */
    void tbsv( char order,  char Uplo,
               char  TransA,  char  Diag,
               INDArray A,
               INDArray X);

    /**
     * tpmv computes a matrix-vector product using a triangular packed matrix.
     * @param order
     * @param Uplo
     * @param TransA
     * @param Diag
     * @param Ap
     * @param X
     */
    void tpmv( char order,  char Uplo,
               char  TransA,  char  Diag,
               INDArray Ap, INDArray X);

    /**
     * tpsv solves a system of linear equations whose coefficients are in a triangular packed matrix.
     * @param order
     * @param Uplo
     * @param TransA
     * @param Diag
     * @param Ap
     * @param X
     */
    void tpsv( char order,  char Uplo,
               char  TransA,  char  Diag,
               INDArray Ap, INDArray X);

    /**
     * trmv computes a matrix-vector product using a triangular matrix.
     * @param order
     * @param Uplo
     * @param TransA
     * @param Diag
     * @param A
     * @param X
     */
    void trmv( char order,  char Uplo,
               char  TransA,  char  Diag,
               INDArray A,
               INDArray X);

    /**
     * trsv solves a system of linear equations whose coefficients are in a triangular matrix.
     * @param order
     * @param Uplo
     * @param TransA
     * @param Diag
     * @param A
     * @param X
     */
    void trsv( char order,  char Uplo,
               char  TransA,  char  Diag,
               INDArray A,INDArray X);
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy