All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.dimensionalityreduction.PCA Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*
 *
 *  * Copyright 2015 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 *
 */

package org.nd4j.linalg.dimensionalityreduction;

import org.nd4j.linalg.api.complex.IComplexNDArray;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.eigen.Eigen;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;

/**
 * PCA class for dimensionality reduction
 *
 * @author Adam Gibson
 */
public class PCA {

    private PCA() {
    }

    /**
     * Reduce the dimension of x
     * to the specified number of dimensions.
     * 

* Happily based on the great work done in the tsne paper here: * http://homepage.tudelft.nl/19j49/t-SNE.html * * @param X the x to reduce * @param nDims the number of dimensions to reduce to * @param normalize normalize * @return the reduced dimension */ public static INDArray pca(INDArray X, int nDims, boolean normalize) { if (normalize) { INDArray mean = X.mean(0); X = X.subiRowVector(mean); } INDArray C; if (X.size(1) < X.size(0)) C = X.transpose().mmul(X); else C = X.mmul(X.transpose()).muli(1 / X.size(0)); IComplexNDArray[] eigen = Eigen.eigenvectors(C); IComplexNDArray M = eigen[1]; IComplexNDArray lambda = eigen[0]; IComplexNDArray diagLambda = Nd4j.diag(lambda); INDArray[] sorted = Nd4j.sortWithIndices(diagLambda, 0, false); //change lambda to be the indexes INDArray indices = sorted[0]; INDArrayIndex[] indices2 = NDArrayIndex.create(indices.get( NDArrayIndex.interval(0, nDims))); INDArrayIndex[] rowsAndColumnIndices = new INDArrayIndex[]{ NDArrayIndex.interval(0, M.rows()), indices2[0] }; M = M.get(rowsAndColumnIndices); X = Nd4j.createComplex(X.subRowVector(X.mean(0))).mmul(M); return X; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy