All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.lossfunctions.LossFunctions Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*
 *
 *  * Copyright 2015 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 *
 */

package org.nd4j.linalg.lossfunctions;

import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.impl.*;

import java.util.Arrays;

import static org.nd4j.linalg.ops.transforms.Transforms.*;


/**
 * Central class for loss functions
 * @author Adam Gibson
 */
public class LossFunctions {

    /**
     * Generic scoring function.
     * Note that an IllegalArgumentException is thrown if the given
     * loss function is custom. An alternative mechanism for scoring
     * (preferrably with a function name and the op factory) should be used instead.
     *
     * @param labels            the labels to score
     * @param lossFunction      the loss function to use
     * @param z                 the output function
     * @param l2                the l2 regularization term (0.5 * l2Coeff * sum w^2)
     * @param l1                the l1 regularization term (l1Coeff * sum |w|)
     * @param useRegularization whether to use regularization
     * @return the score for the given parameters
     */
    public static double score(INDArray labels, LossFunction lossFunction, INDArray z, double l2, double l1,boolean useRegularization) {
        return LossCalculation.builder()
                .l1(l1).lossFunction(lossFunction)
                .l2(l2).labels(labels)
                .z(z)
                .useRegularization(useRegularization)
                .build().score();
    }

    /**
     * MSE: Mean Squared Error: Linear Regression
* EXPLL: Exponential log likelihood: Poisson Regression
* XENT: Cross Entropy: Binary Classification
* MCXENT: Multiclass Cross Entropy
* RMSE_XENT: RMSE Cross Entropy
* SQUARED_LOSS: Squared Loss
* NEGATIVELOGLIKELIHOOD: Negative Log Likelihood
*/ public enum LossFunction { MSE, L1, @Deprecated EXPLL, XENT, MCXENT, @Deprecated RMSE_XENT, SQUARED_LOSS, RECONSTRUCTION_CROSSENTROPY, NEGATIVELOGLIKELIHOOD, @Deprecated CUSTOM, COSINE_PROXIMITY, HINGE, SQUARED_HINGE, KL_DIVERGENCE, MEAN_ABSOLUTE_ERROR, L2, MEAN_ABSOLUTE_PERCENTAGE_ERROR, MEAN_SQUARED_LOGARITHMIC_ERROR, POISSON; public ILossFunction getILossFunction(){ switch(this){ case MSE: case SQUARED_LOSS: return new LossMSE(); case L1: return new LossL1(); case XENT: return new LossBinaryXENT(); case MCXENT: return new LossMCXENT(); case KL_DIVERGENCE: case RECONSTRUCTION_CROSSENTROPY: return new LossKLD(); case NEGATIVELOGLIKELIHOOD: return new LossNegativeLogLikelihood(); case COSINE_PROXIMITY: return new LossCosineProximity(); case HINGE: return new LossHinge(); case SQUARED_HINGE: return new LossSquaredHinge(); case MEAN_ABSOLUTE_ERROR: return new LossMAE(); case L2: return new LossL2(); case MEAN_ABSOLUTE_PERCENTAGE_ERROR: return new LossMAPE(); case MEAN_SQUARED_LOGARITHMIC_ERROR: return new LossMSLE(); case POISSON: case EXPLL: return new LossPoisson(); default: //Custom, RMSE_XENT throw new UnsupportedOperationException("Unknown or not supported loss function: " + this); } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy