All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.nd4j.linalg.lossfunctions.impl.LossBinaryXENT Maven / Gradle / Ivy
package org.nd4j.linalg.lossfunctions.impl;
import lombok.EqualsAndHashCode;
import org.apache.commons.math3.util.Pair;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.transforms.LogSoftMax;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.ops.transforms.Transforms;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Created by susaneraly on 8/22/16.
*/
@EqualsAndHashCode
public class LossBinaryXENT implements ILossFunction {
private static Logger logger = LoggerFactory.getLogger(LossBinaryXENT.class);
private INDArray scoreArray(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
INDArray scoreArr;
if ("softmax".equals(activationFn)) {
//Use LogSoftMax op to avoid numerical issues when calculating score
INDArray logsoftmax = Nd4j.getExecutioner().execAndReturn(new LogSoftMax(preOutput.dup()));
scoreArr = logsoftmax.muli(labels);
} else {
INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()));
scoreArr = Transforms.log(output, false).muli(labels);
}
if (mask != null) {
scoreArr.muliColumnVector(mask);
}
return scoreArr;
}
@Override
public double computeScore(INDArray labels, INDArray preOutput, String activationFn, INDArray mask, boolean average) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
double score = -scoreArr.sumNumber().doubleValue();
if (average) {
score /= scoreArr.size(0);
}
return score;
}
@Override
public INDArray computeScoreArray(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
return scoreArr.sum(1).muli(-1);
}
@Override
public INDArray computeGradient(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
INDArray grad;
INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()));
if ("softmax".equals(activationFn)) {
grad = output.subi(labels);
} else {
INDArray outputder = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()).derivative());
grad = outputder.muli(labels);
grad.divi(output).muli(-1);
}
if (mask != null) {
grad.muliColumnVector(mask);
}
return grad;
}
@Override
public Pair computeGradientAndScore(INDArray labels, INDArray preOutput, String activationFn, INDArray mask, boolean average) {
//TODO: probably a more efficient way to do this...
return new Pair<>(
computeScore(labels, preOutput, activationFn, mask, average),
computeGradient(labels, preOutput, activationFn, mask));
}
@Override
public String toString() {
return "LossBinaryXENT()";
}
}