All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.nd4j.linalg.lossfunctions.impl.LossMAPE Maven / Gradle / Ivy
package org.nd4j.linalg.lossfunctions.impl;
import lombok.EqualsAndHashCode;
import org.apache.commons.math3.util.Pair;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.transforms.Abs;
import org.nd4j.linalg.api.ops.impl.transforms.Sign;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossUtil;
/**
* Created by susaneraly on 8/15/16.
*/
@EqualsAndHashCode
public class LossMAPE implements ILossFunction {
public INDArray scoreArray(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
INDArray scoreArr;
INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()));
scoreArr = output.rsubi(labels).divi(labels);
Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform("abs", scoreArr));
scoreArr.muli(100.0 / labels.size(1));
if (mask != null) scoreArr.muliColumnVector(mask);
return scoreArr;
}
@Override
public double computeScore(INDArray labels, INDArray preOutput, String activationFn, INDArray mask, boolean average) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
double score = scoreArr.sumNumber().doubleValue();
if (average) score /= scoreArr.size(0);
return score;
}
@Override
public INDArray computeScoreArray(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
return scoreArr.sum(1);
}
@Override
public INDArray computeGradient(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()));
INDArray actSubPredicted = labels.sub(output);
INDArray dlda = Nd4j.getExecutioner().execAndReturn(new Sign(actSubPredicted));
INDArray absLabels = Nd4j.getExecutioner().execAndReturn(new Abs(labels.dup()));
dlda.divi(absLabels).muli(-100.0 / labels.size(1));
INDArray gradient;
if ("softmax".equals(activationFn)) {
gradient = LossUtil.dLdZsoftmaxi(dlda, output);
} else {
INDArray sigmaPrimeZ = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()).derivative());
gradient = dlda.muli(sigmaPrimeZ);
}
if (mask != null) {
gradient.muliColumnVector(mask);
}
return gradient;
}
@Override
public org.apache.commons.math3.util.Pair computeGradientAndScore(INDArray labels, INDArray preOutput, String activationFn, INDArray mask, boolean average) {
//TODO: probably a more efficient way to do this...
//Yes - will implement in round two. Just want to get done now.
return new Pair<>(
computeScore(labels, preOutput, activationFn, mask, average),
computeGradient(labels, preOutput, activationFn, mask));
}
@Override
public String toString() {
return "LossMAPE()";
}
}