All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.nd4j.linalg.lossfunctions.impl.LossMSLE Maven / Gradle / Ivy
package org.nd4j.linalg.lossfunctions.impl;
import lombok.EqualsAndHashCode;
import org.apache.commons.math3.util.Pair;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossUtil;
import org.nd4j.linalg.ops.transforms.Transforms;
/**
* Created by susaneraly on 8/15/16.
*/
@EqualsAndHashCode
public class LossMSLE implements ILossFunction {
public INDArray scoreArray(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
INDArray scoreArr;
INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()));
scoreArr = Transforms.log(output.addi(1.0).divi(labels.add(1.0)), false);
scoreArr = scoreArr.muli(scoreArr).divi(labels.size(1));
if (mask != null) scoreArr.muliColumnVector(mask);
return scoreArr;
}
@Override
public double computeScore(INDArray labels, INDArray preOutput, String activationFn, INDArray mask, boolean average) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
double score = scoreArr.sumNumber().doubleValue();
if (average) score /= scoreArr.size(0);
return score;
}
@Override
public INDArray computeScoreArray(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
return scoreArr.sum(1);
}
@Override
public INDArray computeGradient(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()));
INDArray gradients;
if ("softmax".equals(activationFn)) {
INDArray p1 = output.add(1.0);
INDArray dlda = p1.rdiv(2.0 / labels.size(1));
INDArray logRatio = Transforms.log(p1.divi(labels.add(1.0)), false);
dlda.muli(logRatio);
gradients = LossUtil.dLdZsoftmaxi(dlda, output);
} else {
INDArray p1 = output.addi(1.0);
INDArray sigmaPrimeZ = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()).derivative());
gradients = sigmaPrimeZ.divi(p1).muli(2.0 / labels.size(1));
INDArray logRatio = Transforms.log(p1.divi(labels.add(1.0)), false);
gradients.muli(logRatio);
}
if (mask != null) {
gradients.muliColumnVector(mask);
}
return gradients;
}
@Override
public org.apache.commons.math3.util.Pair computeGradientAndScore(INDArray labels, INDArray preOutput, String activationFn, INDArray mask, boolean average) {
//TODO: probably a more efficient way to do this...
//Yes - will implement in round two. Just want to get done now.
return new Pair<>(
computeScore(labels, preOutput, activationFn, mask, average),
computeGradient(labels, preOutput, activationFn, mask));
}
@Override
public String toString() {
return "LossMSLE()";
}
}