Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*
*/
package org.nd4j.linalg.api.ops.executioner;
import org.apache.commons.lang3.SystemUtils;
import org.apache.commons.math3.util.Pair;
import org.nd4j.linalg.api.complex.IComplexNDArray;
import org.nd4j.linalg.api.complex.IComplexNumber;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.*;
import org.nd4j.linalg.api.ops.aggregates.Aggregate;
import org.nd4j.linalg.api.ops.aggregates.Batch;
import org.nd4j.linalg.api.ops.impl.accum.Variance;
import org.nd4j.linalg.api.rng.Random;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.util.ArrayUtil;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
/**
* Basic op executioner. Knows how to iterate over
* the buffers of each respective ndarray and apply transformations
*
* @author Adam Gibson
*/
public class DefaultOpExecutioner implements OpExecutioner {
protected ExecutionMode executionMode = ExecutionMode.JAVA;
public DefaultOpExecutioner() {
}
protected void checkForCompression(Op op) {
if (op.x().isCompressed())
Nd4j.getCompressor().decompressi(op.x());
if (op.y() != null && op.y().isCompressed())
Nd4j.getCompressor().decompressi(op.y());
if (op.z() != null && op.z().isCompressed())
Nd4j.getCompressor().decompressi(op.z());
}
@Override
public Op exec(Op op) {
if (op.isPassThrough()) {
op.exec();
return op;
}
throw new IllegalStateException("Java computation no longer supported");
}
@Override
public INDArray execAndReturn(Op op) {
if (op instanceof TransformOp) {
return execAndReturn((TransformOp) op);
} else if (op instanceof ScalarOp) {
return execAndReturn((ScalarOp) op);
} else if (op instanceof Accumulation) {
return Nd4j.scalar(execAndReturn((Accumulation) op).getFinalResult());
} else if (op instanceof IndexAccumulation) {
return Nd4j.scalar(execAndReturn((IndexAccumulation) op).getFinalResult());
}
throw new IllegalArgumentException("Illegal type of op: " + op.getClass());
}
@Override
public void iterateOverAllRows(Op op) {
//column and row vectors should be treated the same
if (op.x().isVector()) {
//reset the op in case
op.setX(op.x());
if (op.y() != null)
op.setY(op.y());
op.setZ(op.z());
exec(op);
}
//execute row wise
else if (op.x().isMatrix()) {
if (op.x() instanceof IComplexNDArray) {
IComplexNDArray original = (IComplexNDArray) op.x();
IComplexNDArray originalZ = (IComplexNDArray) op.z();
IComplexNDArray y = (IComplexNDArray) op.y();
for (int i = 0; i < original.rows(); i++) {
IComplexNDArray row = original.slice(i);
IComplexNDArray zRow = originalZ.slice(i);
op.setX(row.dup());
op.setZ(zRow.dup());
if (y != null)
op.setY(y.slice(i));
exec(op);
originalZ.slice(i).assign(op.z());
}
} else {
INDArray original = op.x();
INDArray originalZ = op.z();
INDArray y = op.y();
for (int i = 0; i < original.rows(); i++) {
INDArray row = original.getRow(i);
INDArray zRow = originalZ.getRow(i);
op.setX(row.dup());
op.setZ(zRow.dup());
if (y != null)
op.setY(y.getRow(i).dup());
exec(op);
zRow.assign(op.z());
}
}
} else {
INDArray originalX = op.x();
INDArray originalZ = op.z();
for (int i = 0; i < originalX.slices(); i++) {
INDArray slice = originalX.slice(i);
INDArray zSlice = originalZ.slice(i);
op.setX(slice);
op.setZ(zSlice);
iterateOverAllRows(op);
}
}
}
@Override
public void iterateOverAllColumns(Op op) {
if (op.x().isVector()) {
exec(op);
}
//execute row wise
else if (op.x().isMatrix() || op.x().isColumnVector()) {
exec(op, 1);
} else {
if (op.x() instanceof IComplexNDArray) {
IComplexNDArray originalX = (IComplexNDArray) op.x();
IComplexNDArray originalZ = (IComplexNDArray) op.z();
IComplexNDArray y = (IComplexNDArray) op.y();
for (int i = 0; i < op.x().slices(); i++) {
op.setX(originalX.getColumn(i));
op.setZ(originalZ.getColumn(i));
if (y != null)
op.setY(y.getColumn(i));
iterateOverAllColumns(op);
}
} else {
INDArray originalX = op.x();
INDArray originalZ = op.z();
INDArray y = op.y();
for (int i = 0; i < op.x().slices(); i++) {
op.setX(originalX.getColumn(i));
op.setZ(originalZ.getColumn(i));
if (y != null)
op.setY(y.getColumn(i));
iterateOverAllColumns(op);
}
}
}
}
@Override
public INDArray execAndReturn(TransformOp op) {
Op result = exec(op);
TransformOp t = (TransformOp) result;
return t.z();
}
@Override
public Accumulation execAndReturn(Accumulation op) {
return (Accumulation) exec(op);
}
@Override
public Accumulation execAndReturn(Variance op, boolean biasCorrected) {
return null;
}
@Override
public INDArray execAndReturn(ScalarOp op) {
return exec(op).z();
}
@Override
public IndexAccumulation execAndReturn(IndexAccumulation op) {
return (IndexAccumulation) exec(op);
}
@Override
public INDArray execAndReturn(BroadcastOp op){
return exec(op).z();
}
@Override
public Op exec(Op op, int... dimension) {
//do op along all dimensions
if (dimension.length == op.x().rank())
dimension = new int[]{Integer.MAX_VALUE};
if (op.isPassThrough()) {
op.exec(dimension);
return op;
}
if (op instanceof Accumulation || op instanceof IndexAccumulation) {
//Overloaded exec(Accumulation,int...) and exec(IndexAccumulation,int...) should always be called instead of this
throw new IllegalStateException("exec(Op,int...) should never be invoked for Accumulation/IndexAccumulation");
} else if (op instanceof ScalarOp) {
//Scalar op along dimension should be same as on the entire NDArray
throw new IllegalStateException("Java computation no longer supported");
}else if (op instanceof TransformOp) {
throw new UnsupportedOperationException("Executing transform ops along a dimension should be done via exec special");
} else {
throw new UnsupportedOperationException("Unknown op type");
}
}
@Override
public INDArray exec(Accumulation op, int... dimension) {
//do op along all dimensions
if (dimension.length == op.x().rank())
dimension = new int[]{Integer.MAX_VALUE};
if (op.isPassThrough()) {
op.exec(dimension);
return op.z();
}
if (dimension[0] == Integer.MAX_VALUE) {
if (op.x() instanceof IComplexNDArray)
return Nd4j.scalar(execAndReturn(op).getFinalResultComplex());
return Nd4j.scalar(execAndReturn(op).getFinalResult().doubleValue());
}
if (op instanceof IComplexNDArray) {
int[] retShape = ArrayUtil.removeIndex(op.x().shape(), dimension);
//ensure vector is proper shape
if (retShape.length == 1) {
if (dimension[0] == 0)
retShape = new int[]{1, retShape[0]};
else
retShape = new int[]{retShape[0], 1};
} else if (retShape.length == 0) {
retShape = new int[]{1, 1};
}
IComplexNDArray ret = Nd4j.createComplex(retShape);
for (int i = 0; i < op.x().tensorssAlongDimension(dimension); i++) {
Op op2 = op.opForDimension(i, dimension);
IComplexNumber result = execAndReturn((Accumulation) op2).getFinalResultComplex();
ret.putScalar(i, result);
}
// FIXME: this is wrong, it breaks shapeInfo immutability
if (ret.ordering() == 'c')
ret.setStride(ArrayUtil.reverseCopy(ret.stride()));
return ret;
}
throw new UnsupportedOperationException("Java computation no longer supported");
}
@Override
public INDArray exec(Variance accumulation, boolean biasCorrected, int... dimension) {
accumulation.setBiasCorrected(biasCorrected);
return exec(accumulation,dimension);
}
@Override
public INDArray exec(IndexAccumulation op, int... dimension) {
throw new UnsupportedOperationException("Operation should use exec special");
}
public ExecutionMode executionMode() {
return executionMode;
}
@Override
public void setExecutionMode(ExecutionMode executionMode) {
this.executionMode = executionMode;
}
@Override
public INDArray exec(BroadcastOp broadcast, int... dimension) {
if (dimension.length == broadcast.x().rank()) {
dimension = new int[]{Integer.MAX_VALUE};
}
if(broadcast.isPassThrough()){
broadcast.exec(dimension);
return broadcast.z();
}
throw new IllegalStateException("Java computation no longer supported");
}
@Override
public void exec(MetaOp op) {
throw new UnsupportedOperationException("MetaOp execution isn't supported for this OpExecutioner yet");
}
@Override
public void exec(GridOp op) {
throw new UnsupportedOperationException("GridOp execution isn't supported for this OpExecutioner yet");
}
/**
* This method return set of key/value and key/key/value objects, describing current environment
*
* @return
*/
@Override
public Properties getEnvironmentInformation() {
Properties environment = new Properties();
environment.put("cores", Runtime.getRuntime().availableProcessors());
environment.put("memory.available", Runtime.getRuntime().maxMemory());
environment.put("os", System.getProperty("os.name"));
return environment;
}
@Override
public void exec(Batch batch) {
throw new UnsupportedOperationException();
}
@Override
public void exec(Aggregate op) {
throw new UnsupportedOperationException();
}
@Override
public void exec(List batch) {
throw new UnsupportedOperationException();
}
/**
* This method executes specified RandomOp using default RNG available via Nd4j.getRandom()
*
* @param op
*/
@Override
public INDArray exec(RandomOp op) {
return exec(op, Nd4j.getRandom());
}
/**
* This method executes specific RandomOp against specified RNG
*
* @param op
* @param rng
*/
@Override
public INDArray exec(RandomOp op, Random rng) {
throw new UnsupportedOperationException();
}
}