All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.nd4j.linalg.lossfunctions.impl.LossKLD Maven / Gradle / Ivy
package org.nd4j.linalg.lossfunctions.impl;
import lombok.EqualsAndHashCode;
import org.apache.commons.math3.util.Pair;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossUtil;
import org.nd4j.linalg.ops.transforms.Transforms;
/**
* Kullback Leibler Divergence loss function
*
* @author Susan Eraly
*/
@EqualsAndHashCode
public class LossKLD implements ILossFunction {
private INDArray scoreArray(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()));
// Clip output and labels to be between Nd4j.EPS_THREsHOLD and 1, i.e. a valid non-zero probability
output = Transforms.min(Transforms.max(output, Nd4j.EPS_THRESHOLD, false), 1, false);
labels = Transforms.min(Transforms.max(labels, Nd4j.EPS_THRESHOLD, true), 1, false);
INDArray logRatio = Transforms.log(output.rdivi(labels), false);
INDArray scoreArr = logRatio.muli(labels);
if (mask != null) {
scoreArr.muliColumnVector(mask);
}
return scoreArr;
}
@Override
public double computeScore(INDArray labels, INDArray preOutput, String activationFn, INDArray mask, boolean average) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
double score = scoreArr.sumNumber().doubleValue();
if (average) {
score /= scoreArr.size(0);
}
return score;
}
@Override
public INDArray computeScoreArray(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
return scoreArr.sum(1);
}
@Override
public INDArray computeGradient(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()));
INDArray grad;
if ("softmax".equals(activationFn)) {
INDArray dlda = labels.div(output).negi();
grad = LossUtil.dLdZsoftmaxi(dlda, output);
} else {
INDArray dlda = output.rdivi(labels).negi();
INDArray sigmaPrimeZ = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()).derivative());
grad = dlda.muli(sigmaPrimeZ);
}
if (mask != null) {
grad.muliColumnVector(mask);
}
return grad;
}
@Override
public Pair computeGradientAndScore(INDArray labels, INDArray preOutput, String activationFn, INDArray mask, boolean average) {
//TODO: probably a more efficient way to do this...
return new Pair<>(
computeScore(labels, preOutput, activationFn, mask, average),
computeGradient(labels, preOutput, activationFn, mask));
}
@Override
public String toString() {
return "LossKLD()";
}
}