All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.lossfunctions.impl.LossL2 Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
package org.nd4j.linalg.lossfunctions.impl;

import lombok.EqualsAndHashCode;
import lombok.Getter;
import org.apache.commons.math3.util.Pair;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossUtil;
import org.nd4j.linalg.lossfunctions.serde.RowVectorDeserializer;
import org.nd4j.linalg.lossfunctions.serde.RowVectorSerializer;
import org.nd4j.shade.jackson.annotation.JsonInclude;
import org.nd4j.shade.jackson.databind.annotation.JsonDeserialize;
import org.nd4j.shade.jackson.databind.annotation.JsonSerialize;

/**
 * L2 loss function: i.e., sum of squared errors, L = sum_i (actual_i - predicted)^2
 * The L2 loss function is the square of the L2 norm of the difference between actual and predicted.
 * See also {@link LossMSE} for a mathematically similar loss function (MSE has division by N, where N is output size)
 *
 * @author Susan Eraly
 */
@EqualsAndHashCode
@JsonInclude(JsonInclude.Include.NON_NULL)
@Getter
public class LossL2 implements ILossFunction {

    @JsonSerialize(using = RowVectorSerializer.class)
    @JsonDeserialize(using = RowVectorDeserializer.class)
    protected final INDArray weights;

    public LossL2() {
        this(null);

    }

    /**
     * L2 loss function where each the output is (optionally) weighted/scaled by a fixed scalar value.
     * Note that the weights array must be a row vector, of length equal to the labels/output dimension 1 size.
     * A weight vector of 1s should give identical results to no weight vector.
     *
     * @param weights Weights array (row vector). May be null.
     */
    public LossL2(INDArray weights) {
        if (weights != null && !weights.isRowVector()) {
            throw new IllegalArgumentException("Weights array must be a row vector");
        }
        this.weights = weights;
    }

    public INDArray scoreArray(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
        INDArray scoreArr;
        INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()));
        scoreArr = output.rsubi(labels);
        scoreArr = scoreArr.muli(scoreArr);

        //Weighted loss function
        if (weights != null) {
            if (weights.length() != output.size(1)) {
                throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + output.size(1));
            }
            scoreArr.muliRowVector(weights);
        }

        //Loss function with masking
        if (mask != null) {
            scoreArr.muliColumnVector(mask);
        }
        return scoreArr;
    }

    @Override
    public double computeScore(INDArray labels, INDArray preOutput, String activationFn, INDArray mask, boolean average) {
        INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);

        double score = scoreArr.sumNumber().doubleValue();

        if (average) score /= scoreArr.size(0);

        return score;
    }

    @Override
    public INDArray computeScoreArray(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
        INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
        return scoreArr.sum(1);
    }

    @Override
    public INDArray computeGradient(INDArray labels, INDArray preOutput, String activationFn, INDArray mask) {
        INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()));

        INDArray gradients;
        if ("softmax".equals(activationFn)) {
            INDArray dlda = output.sub(labels).muli(2);
            if (weights != null) {
                dlda.muliRowVector(weights);
            }
            gradients = LossUtil.dLdZsoftmaxi(dlda, output);
        } else {
            INDArray sigmaPrimeZ = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()).derivative());
            gradients = output.subi(labels).muli(2).muli(sigmaPrimeZ);

            if (weights != null) {
                gradients.muliRowVector(weights);
            }
        }


        //Loss function with masking
        if (mask != null) {
            gradients.muliColumnVector(mask);
        }
        return gradients;
    }

    @Override
    public org.apache.commons.math3.util.Pair computeGradientAndScore(INDArray labels, INDArray preOutput, String activationFn, INDArray mask, boolean average) {
        //TODO: probably a more efficient way to do this...

        return new Pair<>(
                computeScore(labels, preOutput, activationFn, mask, average),
                computeGradient(labels, preOutput, activationFn, mask));
    }

    @Override
    public String toString() {
        if (weights == null) return "LossL2()";
        return "LossL2(weights=" + weights + ")";
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy