All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.lossfunctions.impl.LossMCXENT Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
package org.nd4j.linalg.lossfunctions.impl;


import lombok.EqualsAndHashCode;
import lombok.Getter;
import org.apache.commons.math3.util.Pair;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.activations.impl.ActivationSoftmax;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.transforms.LogSoftMax;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.serde.RowVectorDeserializer;
import org.nd4j.linalg.lossfunctions.serde.RowVectorSerializer;
import org.nd4j.linalg.ops.transforms.Transforms;
import org.nd4j.shade.jackson.annotation.JsonInclude;
import org.nd4j.shade.jackson.databind.annotation.JsonDeserialize;
import org.nd4j.shade.jackson.databind.annotation.JsonSerialize;

/**
 *
 * Multi-Class Cross Entropy loss function:
* L = sum_i actual_i * log( predicted_i ) * * @author Alex Black, Susan Eraly * @see LossNegativeLogLikelihood */ @EqualsAndHashCode @JsonInclude(JsonInclude.Include.NON_NULL) @Getter public class LossMCXENT implements ILossFunction { @JsonSerialize(using = RowVectorSerializer.class) @JsonDeserialize(using = RowVectorDeserializer.class) private final INDArray weights; public LossMCXENT() { this(null); } /** * Multi-Class Cross Entropy loss function where each the output is (optionally) weighted/scaled by a fixed scalar value. * Note that the weights array must be a row vector, of length equal to the labels/output dimension 1 size. * A weight vector of 1s should give identical results to no weight vector. * * @param weights Weights array (row vector). May be null. */ public LossMCXENT(INDArray weights) { if (weights != null && !weights.isRowVector()) { throw new IllegalArgumentException("Weights array must be a row vector"); } this.weights = weights; } private INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { INDArray scoreArr; //if ("softmax".equals(activationFn)) { if (activationFn instanceof ActivationSoftmax) { //Use LogSoftMax op to avoid numerical issues when calculating score INDArray logsoftmax = Nd4j.getExecutioner().execAndReturn(new LogSoftMax(preOutput.dup())); scoreArr = logsoftmax.muli(labels); } else { //INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup())); INDArray output = activationFn.getActivation(preOutput.dup(),true); scoreArr = Transforms.log(output, false).muli(labels); } //Weighted loss function if (weights != null) { if (weights.length() != scoreArr.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + preOutput.size(1)); } scoreArr.muliRowVector(weights); } if (mask != null) { scoreArr.muliColumnVector(mask); } return scoreArr; } @Override public double computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average) { INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask); double score = -scoreArr.sumNumber().doubleValue(); if (average) { score /= scoreArr.size(0); } return score; } @Override public INDArray computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask); return scoreArr.sum(1).muli(-1); } @Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { INDArray grad; //INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup())); INDArray output = activationFn.getActivation(preOutput.dup(),true); if (activationFn instanceof ActivationSoftmax) { //Weighted loss function if (weights != null) { if (weights.length() != output.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + output.size(1)); } INDArray temp = labels.mulRowVector(weights); INDArray col = temp.sum(1); grad = output.mulColumnVector(col).sub(temp); } else { grad = output.subi(labels); } } else { //INDArray sigmaPrimeZ = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()).derivative()); INDArray dLda = output.rdivi(labels).negi(); grad = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation function with weights //Weighted loss function if (weights != null) { if (weights.length() != output.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + output.size(1)); } grad.muliRowVector(weights); } } //Loss function with masking if (mask != null) { grad.muliColumnVector(mask); } return grad; } @Override public Pair computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask, boolean average) { //TODO: probably a more efficient way to do this... return new Pair<>( computeScore(labels, preOutput, activationFn, mask, average), computeGradient(labels, preOutput, activationFn, mask)); } @Override public String toString() { if (weights == null) return "LossMCXENT()"; return "LossMCXENT(weights=" + weights + ")"; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy