All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.api.ndarray.INDArray Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*-
 *
 *  * Copyright 2015 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 *
 */

package org.nd4j.linalg.api.ndarray;

import com.google.flatbuffers.FlatBufferBuilder;
import org.nd4j.linalg.api.blas.params.MMulTranspose;
import org.nd4j.linalg.api.buffer.DataBuffer;
import org.nd4j.linalg.api.complex.IComplexNDArray;
import org.nd4j.linalg.api.complex.IComplexNumber;
import org.nd4j.linalg.exception.Nd4jNoSuchWorkspaceException;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.ShapeOffsetResolution;
import org.nd4j.linalg.indexing.conditions.Condition;

import java.io.Serializable;
import java.nio.IntBuffer;
import java.util.List;

/**
 * Interface for an ndarray
 *
 * @author Adam Gibson
 */
public interface INDArray extends Serializable {
    /**
     * Returns the shape information debugging
     * information
     * @return the shape information debugging information
     */
    String shapeInfoToString();

    /**
     * Shape info
     * @return
     */
    DataBuffer shapeInfoDataBuffer();

    /**
     * Sparse info
     * @return
     */
    DataBuffer sparseInfoDataBuffer();

    /**
     * Shape info
     * @return
     */
    IntBuffer shapeInfo();

    /**
     * Returns true if this array is a view or not
     * @return
     */
    boolean isView();

    /**
     * Returns true if this array is sparse
     * @return
     */
    boolean isSparse();

    /**
     * Returns true if this array is compressed, and false otherwise
     * @return
     */
    boolean isCompressed();

    /**
     * This method marks INDArray instance as compressed
     * PLEASE NOTE: Do not use this method unless you 100% have to
     *
     * @param reallyCompressed
     */
    void markAsCompressed(boolean reallyCompressed);

    /**
     * Set the ndarray to wrap around
     * @param wrapAround thewrap around
     */
    void setWrapAround(boolean wrapAround);

    /**
     * Returns true if the ndarray
     * on linear indexing wraps around
     * based on the stride(1) of the ndarray
     * This is a useful optimization in linear view
     * where strides that might otherwise
     * go out of bounds but wrap around instead.
     *
     * @return true if this ndarray wraps around on linear
     * indexing, false otherwise
     */
    boolean isWrapAround();

    /**
     * Returns the rank of the ndarray (the number of dimensions).
     *
     * @return the rank for the ndarray.
     */
    int rank();

    /**
     * Calculate the stride along a particular dimension
     * @param dimension the dimension to get the stride for
     * @return the stride for a particular dimension
     */
    int stride(int dimension);

    /**
     * Element stride (one element to the next,
     * also called the defualt stride: 1 for normal
     * 2 for complex)
     * @return
     */
    int elementStride();


    /**
     * Element wise stride
     */
    int elementWiseStride();

    /**
     * Returns true if the ndarray has already been freed
     * @return
     */
    boolean isCleanedUp();

    /**
     * Cleanup resources
     */
    void cleanup();

    /**
     * Resets the linear view
     */
    void resetLinearView();

    /**
     * Return the second stride for an ndarray.
     * Think of this as the stride for the next element in a column.
     *
     * @return the secondary stride for an ndarray
     */
    int secondaryStride();

    /**
     * Get a scalar
     * at the given linear offset
     * @param offset the offset to get at
     * @return this
     */
    double getDoubleUnsafe(long offset);

    /**
     * Insert a scalar
     * at the given linear offset
     * @param offset the offset to insert at
     * @param value the value to insert
     * @return this
     */
    INDArray putScalarUnsafe(long offset, double value);

    /**
     * Return the major stride for an ndarray
     *
     * @return the major stride for an ndarray
     */
    int majorStride();

    /**
     * Get the inner most stride
     * wrt the ordering of the array
     * @return
     */
    int innerMostStride();

    /**
     * Returns a linear view reference of shape
     * 1,length(ndarray)
     *
     * @return the linear view of this ndarray
     */
    INDArray linearView();



    /**
     * Returns a linear view reference of shape
     * 1,length(ndarray)
     *
     * @return the linear view of this ndarray
     */
    INDArray linearViewColumnOrder();

    /**
     * Returns the number of possible vectors for a given dimension
     *
     * @param dimension the dimension to calculate the number of vectors for
     * @return the number of possible vectors along a dimension
     */
    int vectorsAlongDimension(int dimension);

    /**
     * Get the vector along a particular dimension
     *
     * @param index     the index of the vector to getScalar
     * @param dimension the dimension to getScalar the vector from
     * @return the vector along a particular dimension
     */
    INDArray vectorAlongDimension(int index, int dimension);

    /**
     * Returns the number of possible vectors for a given dimension
     *
     * @param dimension the dimension to calculate the number of vectors for
     * @return the number of possible vectors along a dimension
     */
    int tensorssAlongDimension(int... dimension);

    /**
     * Get the vector along a particular dimension
     *
     * @param index     the index of the vector to getScalar
     * @param dimension the dimension to getScalar the vector from
     * @return the vector along a particular dimension
     */
    INDArray tensorAlongDimension(int index, int... dimension);

    /**
     * Get the vector along a particular dimension
     *
     * @param index     the index of the vector to getScalar
     * @param dimension the dimension to getScalar the vector from
     * @return the vector along a particular dimension
     */
    INDArray javaTensorAlongDimension(int index, int... dimension);


    /**
     * Returns the cumulative sum along a dimension. In-place method.
     *
     * @param dimension the dimension to perform cumulative sum along.
     * @return this object.
     */
    INDArray cumsumi(int dimension);

    /**
     * Returns the cumulative sum along a dimension.
     *
     * @param dimension the dimension to perform cumulative sum along.
     * @return the cumulative sum along the specified dimension
     */
    INDArray cumsum(int dimension);

    /**
     * Assign all of the elements in the given
     * ndarray to this ndarray
     *
     * @param arr the elements to assign
     * @return this
     */
    INDArray assign(INDArray arr);

    /**
     * Assign all elements from given ndarray that are matching given condition,
     * ndarray to this ndarray
     *
     * @param arr the elements to assign
     * @return this
     */
    INDArray assignIf(INDArray arr, Condition condition);


    /**
     * Replaces all elements in this ndarray that are matching give condition, with corresponding elements from given array
     *
     * @param arr       Source array
     * @param condition Condition to apply
     * @return New array with values conditionally replaced
     */
    INDArray replaceWhere(INDArray arr, Condition condition);


    /**
     * Insert the number linearly in to the ndarray
     *
     * @param i     the index to insert into
     * @param value the value to insert
     * @return this
     */
    INDArray putScalar(int i, double value);

    /**
     * Insert a scalar float at the specified index
     *
     * @param i     The index to insert into
     * @param value Value to insert
     * @return This array
     */
    INDArray putScalar(int i, float value);

    /**
     * Insert a scalar int at the specified index
     *
     * @param i     The index to insert into
     * @param value Value to insert
     * @return This array
     */
    INDArray putScalar(int i, int value);

    /**
     * Insert the item at the specified indices
     *
     * @param i     the indices to insert at
     * @param value the number to insert
     * @return this
     */
    INDArray putScalar(int[] i, double value);

    /**
     * Insert the value at the specified indices, in a 2d (rank 2) NDArray
* Equivalent to {@link #putScalar(int[], double)} but avoids int[] creation * @param row Row (dimension 0) index * @param col Column (dimension 1) index * @param value Value to put * @return This INDArray */ INDArray putScalar(int row, int col, double value); /** * Insert the value at the specified indices, in a 3d (rank 3) NDArray
* Equivalent to {@link #putScalar(int[], double)} but avoids int[] creation * @param dim0 Dimension 0 index * @param dim1 Dimension 1 index * @param dim2 Dimension 2 index * @param value Value to put * @return This INDArray */ INDArray putScalar(int dim0, int dim1, int dim2, double value); /** * Insert the value at the specified indices, in a 4d (rank 4) NDArray
* Equivalent to {@link #putScalar(int[], double)} but avoids int[] creation * @param dim0 Dimension 0 index * @param dim1 Dimension 1 index * @param dim2 Dimension 2 index * @param dim3 Dimension 3 index * @param value Value to put * @return This INDArray */ INDArray putScalar(int dim0, int dim1, int dim2, int dim3, double value); /** * Returns the binary ndarray for "Less" comparison. * * @param other the number to compare. * @return the binary ndarray for "Less" comparison. */ INDArray lt(Number other); /** * Returns the binary ndarray for "Less" comparison. In-place method. * * @param other the number to compare. * @return this object. */ INDArray lti(Number other); /** * Put the specified float value at the specified indices in this array * * @param indexes Indices to place the value * @param value Value to insert * @return This array */ INDArray putScalar(int[] indexes, float value); /** * Put the specified integer value at the specified indices in this array * * @param indexes Indices to place the value * @param value Value to insert * @return This array */ INDArray putScalar(int[] indexes, int value); /** * Returns the binary ndarray for "Epsilon equals" comparison. * * @param other the number to compare. * @return the binary ndarray for "Epsilon equals" comparison. */ INDArray eps(Number other); /** * Returns the binary ndarray for "Epsilon equals" comparison. In-place method. * * @param other the number to compare. * @return this object. */ INDArray epsi(Number other); /** * Returns the binary ndarray for "Equals" comparison. * * @param other the number to compare. * @return the binary ndarray for "Equals" comparison. */ INDArray eq(Number other); /** * Returns the binary ndarray for "Equals" comparison. In-place method. * * @param other the number to compare. * @return this object. */ INDArray eqi(Number other); /** * Returns the binary ndarray for "Greater" comparison. * * @param other the number to compare. * @return the binary ndarray for "Greater" comparison. */ INDArray gt(Number other); /** * Returns binary ndarray for "Greter or equals" comparison. * * @param other the number to compare. * @return binary ndarray for "Greter or equals" comparison. */ INDArray gte(Number other); /** * Returns the binary ndarray for "Less or equals" comparison. * * @param other the number to compare. * @return the binary ndarray for "Less or equals" comparison. */ INDArray lte(Number other); /** * Returns the binary ndarray for "Greter or equals" comparison. In-place method. * * @param other the number to compare. * @return this object. */ INDArray gtei(Number other); /** * Returns the binary ndarray for "Less or equals" comparison. In-place method. * * @param other the number to compare. * @return this object. */ INDArray ltei(Number other); /** * Returns the binary ndarray for "Greter" comparison. In-place method. * * @param other the number to compare. * @return this object. */ INDArray gti(Number other); /** * Returns the binary ndarray for "Less" comparison. * * @param other the ndarray to compare. * @return the binary ndarray for "Less" comparison. */ INDArray lt(INDArray other); /** * Returns the binary ndarray for "Less" comparison. In-place method. * * @param other the ndarray to compare. * @return this object. */ INDArray lti(INDArray other); /** * Returns the binary ndarray for "Epsilon equals" comparison. * * @param other the ndarray to compare. * @return the binary ndarray for "Epsilon equals" comparison. */ INDArray eps(INDArray other); /** * Returns the binary ndarray for "Epsilon equals" comparison. In-place method. * * @param other the ndarray to compare. * @return this object. */ INDArray epsi(INDArray other); /** * Returns the binary ndarray for "Not equals" comparison. * * @param other the number to compare. * @return the binary ndarray for "Not equals" comparison. */ INDArray neq(Number other); /** * Returns the binary ndarray for "Not equals" comparison. In-place method. * * @param other the number to compare. * @return this object. */ INDArray neqi(Number other); /** * Returns the binary ndarray for "Not equals" comparison. * * @param other the ndarray to compare. * @return the binary ndarray for "Not equals" comparison. */ INDArray neq(INDArray other); /** * Returns the binary ndarray for "Not equals" comparison. In-place method. * * @param other the ndarray to compare. * @return this object. */ INDArray neqi(INDArray other); /** * Returns the binary ndarray for "Equals" comparison. * * @param other the ndarray to compare. * @return the binary ndarray for "Equals" comparison. */ INDArray eq(INDArray other); /** * Returns the binary ndarray for "Equals" comparison. In-place method. * * @param other the ndarray to compare. * @return this object. */ INDArray eqi(INDArray other); /** * Returns the binary ndarray for "Greter" comparison. * * @param other the ndarray to compare. * @return the binary ndarray for "Greter" comparison. */ INDArray gt(INDArray other); /** * Returns the binary ndarray for "Greter" comparison. In-place method. * * @param other the ndarray to compare. * @return this object. */ INDArray gti(INDArray other); /** * Returns the ndarray negative (cloned) * * @return Array copy with all values negated */ INDArray neg(); /** * In place setting of the negative version of this ndarray * * @return This array with all values negated */ INDArray negi(); /** * Reverse division with a scalar - i.e., (n / thisArrayValues) * * @param n Value to use for reverse division * @return Copy of array after applying reverse division */ INDArray rdiv(Number n); /** * In place reverse division - i.e., (n / thisArrayValues) * * @param n Value to use for reverse division * @return This array after applying reverse division */ INDArray rdivi(Number n); /** * Reverse subtraction with duplicates - i.e., (n - thisArrayValues) * * @param n Value to use for reverse subtraction * @return Copy of array after reverse subtraction */ INDArray rsub(Number n); /** * Reverse subtraction in place - i.e., (n - thisArrayValues) * * @param n Value to use for reverse subtraction * @return This array after reverse subtraction */ INDArray rsubi(Number n); /** * Division by a number * * @param n Number to divide values by * @return Copy of array after division */ INDArray div(Number n); /** * In place scalar division * * @param n Number to divide values by * @return This array, after applying division operation */ INDArray divi(Number n); /** * Scalar multiplication (copy) * * @param n the number to multiply by * @return a copy of this ndarray multiplied by the given number */ INDArray mul(Number n); /** * In place scalar multiplication * * @param n The number to multiply by * @return This array, after applying scaler multiplication */ INDArray muli(Number n); /** * Scalar subtraction (copied) * * @param n the number to subtract by * @return Copy of this array after applying subtraction operation */ INDArray sub(Number n); /** * In place scalar subtraction * * @param n Number to subtract * @return This array, after applying subtraction operation */ INDArray subi(Number n); /** * Scalar addition (cloning) * * @param n the number to add * @return a clone with this matrix + the given number */ INDArray add(Number n); /** * In place scalar addition * * @param n Number to add * @return This array, after adding value */ INDArray addi(Number n); /** * Reverse division (number / ndarray) * * @param n the number to divide by * @param result Array to place the result in. Must match shape of this array * @return Result array */ INDArray rdiv(Number n, INDArray result); /** * Reverse in place division * * @param n the number to divide by by * @param result the result ndarray * @return the result ndarray */ INDArray rdivi(Number n, INDArray result); /** * Reverse subtraction * * @param n the number to subtract by * @param result the result ndarray * @return */ INDArray rsub(Number n, INDArray result); /** * Reverse in place subtraction * * @param n the number to subtract by * @param result the result ndarray * @return the result ndarray */ INDArray rsubi(Number n, INDArray result); /** * @param n * @param result * @return */ INDArray div(Number n, INDArray result); /** * In place division of this ndarray * * @param n the number to divide by * @param result the result ndarray * @return */ INDArray divi(Number n, INDArray result); INDArray mul(Number n, INDArray result); /** * In place multiplication of this ndarray * * @param n the number to divide by * @param result the result ndarray * @return */ INDArray muli(Number n, INDArray result); INDArray sub(Number n, INDArray result); /** * In place subtraction of this ndarray * * @param n the number to subtract by * @param result the result ndarray * @return the result ndarray */ INDArray subi(Number n, INDArray result); INDArray add(Number n, INDArray result); /** * In place addition * * @param n the number to add * @param result the result ndarray * @return the result ndarray */ INDArray addi(Number n, INDArray result); /** * Returns a subset of this array based on the specified * indexes * * @param indexes the indexes in to the array * @return a view of the array with the specified indices */ INDArray get(INDArrayIndex... indexes); /** * Return a mask on whether each element * matches the given condition * @param comp * @param condition * @return */ INDArray match(INDArray comp,Condition condition); /** * Returns a mask * @param comp * @param condition * @return */ INDArray match(Number comp,Condition condition); /** * Boolean indexing: * Return the element if it fulfills the condition in * result array * @param comp the comparison array * @param condition the condition to apply * @return the array fulfilling the criteria */ INDArray getWhere(INDArray comp,Condition condition); /** * Boolean indexing: * Return the element if it fulfills the condition in * result array * @param comp the comparison array * @param condition the condition to apply * @return the array fulfilling the criteria */ INDArray getWhere(Number comp,Condition condition); /** * Assign the element according * to the comparison array * @param comp the comparison array * @param put the elements to put * @param condition the condition for masking on * @return */ INDArray putWhere(INDArray comp,INDArray put,Condition condition); /** * Assign the element according * to the comparison array * @param comp the comparison array * @param put the elements to put * @param condition the condition for masking on * @return */ INDArray putWhere(Number comp,INDArray put,Condition condition); /** * Use a pre computed mask * for assigning arrays * @param mask the mask to use * @param put the array to put * @return the resulting array */ INDArray putWhereWithMask(INDArray mask,INDArray put); /** * Use a pre computed mask * for assigning arrays * @param mask the mask to use * @param put the array to put * @return the resulting array */ INDArray putWhereWithMask(INDArray mask,Number put); /** * Assign the element according * to the comparison array * @param comp the comparison array * @param put the elements to put * @param condition the condition for masking on * @return */ INDArray putWhere(Number comp,Number put,Condition condition); /** * Get the elements from this ndarray based on the specified indices * @param indices an ndaray of the indices to get the elements for * @return the elements to get the array for */ INDArray get(INDArray indices); /** * Get the elements from this ndarray based on the specified indices * @param indices an ndaray of the indices to get the elements for * @return the elements to get the array for */ INDArray get(List> indices); /** * Get an INDArray comprised of the specified columns only. Copy operation. * * @param columns Columns to extract out of the current array * @return Array with only the specified columns */ INDArray getColumns(int... columns); /** * Get an INDArray comprised of the specified rows only. Copy operation * * @param rows Rose to extract from this array * @return Array with only the specified rows */ INDArray getRows(int... rows); /** * Reverse division, elements wise. i.e., other / this * * @param other the matrix to divide from * @return Copy of this array after performing element wise reverse division */ INDArray rdiv(INDArray other); /** * Reverse divsion (in place). i.e., other / this * * @param other The matrix to divide from * @return This array after performing element wise reverse division */ INDArray rdivi(INDArray other); /** * Reverse division * * @param other the matrix to subtract from * @param result the result ndarray * @return */ INDArray rdiv(INDArray other, INDArray result); /** * Reverse division (in-place) * * @param other the other ndarray to subtract * @param result the result ndarray * @return the ndarray with the operation applied */ INDArray rdivi(INDArray other, INDArray result); /** * Reverse subtraction * * @param other the matrix to subtract from * @param result the result ndarray * @return */ INDArray rsub(INDArray other, INDArray result); /** * Element-wise reverse subtraction (copy op). i.e., other - this * * @param other Other array to use in reverse subtraction * @return Copy of this array, after applying reverse subtraction */ INDArray rsub(INDArray other); /** * Element-wise reverse subtraction (in the place op) - i.e., other - this * * @param other Other way to use in reverse subtraction operation * @return This array, after applying reverse subtraction */ INDArray rsubi(INDArray other); /** * Reverse subtraction (in-place) * * @param other the other ndarray to subtract * @param result the result ndarray * @return the ndarray with the operation applied */ INDArray rsubi(INDArray other, INDArray result); /** * Set all entries of the ndarray to the specified value * * @param value the value to assign * @return the ndarray with the values */ INDArray assign(Number value); /** * Get the linear index of the data in to * the array * * @param i the index to getScalar * @return the linear index in to the data */ int linearIndex(int i); /** * Validate dimensions are equal * * @param other the other ndarray to compare */ void checkDimensions(INDArray other); /** * * @param list */ void sliceVectors(List list); /** * Assigns the given matrix (put) to the specified slice * * @param slice the slice to assign * @param put the slice to applyTransformToDestination * @return this for chainability */ INDArray putSlice(int slice, INDArray put); /** * 1 in the ndarray if the element matches * the condition 0 otherwise * * @param condition Condition to apply * @return Copy of this array with values 0 (condition does not apply), or one (condition applies) */ INDArray cond(Condition condition); /** * In-place: 1 in the ndarray if the element matches the condition 0 otherwise * * @param condition Condition to apply * @return This array, modified with values 0 (condition does not apply), or one (condition applies) */ INDArray condi(Condition condition); /** * Replicate and tile array to fill out to the given shape * * @param shape the new shape of this ndarray * @return the shape to fill out to */ INDArray repmat(int... shape); /** * Repeat elements along a specified dimension. * * @param dimension the dimension to repeat * @param repeats the number of elements to repeat on each element * @return */ INDArray repeat(int dimension, int... repeats); /** * Insert a row in to this array * Will throw an exception if this * ndarray is not a matrix * * @param row the row insert into * @param toPut the row to insert * @return this */ INDArray putRow(int row, INDArray toPut); /** * Insert a column in to this array * Will throw an exception if this * ndarray is not a matrix * * @param column the column to insert * @param toPut the array to put * @return this */ INDArray putColumn(int column, INDArray toPut); /** * Returns the element at the specified row/column * This will throw an exception if the * * @param row the row of the element to return * @param column the row of the element to return * @return a scalar indarray of the element at this index */ INDArray getScalar(int row, int column); /** * Returns the element at the specified index * * @param i the index of the element to return * @return a scalar ndarray of the element at this index */ INDArray getScalar(int i); /** * Return the linear index of the specified row and column * * @param row the row to getScalar the linear index for * @param column the column to getScalar the linear index for * @return the linear index of the given row and column */ int index(int row, int column); /** * Returns the square of the Euclidean distance. */ double squaredDistance(INDArray other); /** * Returns the (euclidean) distance. */ double distance2(INDArray other); /** * Returns the (1-norm) distance. */ double distance1(INDArray other); /** * Put element in to the indices denoted by * the indices ndarray. * This is equivalent to: * a[indices] = element * * in numpy. * * @param indices the indices to put * @param element the element array to put * @return this array */ INDArray put(List> indices,INDArray element); /** * Put element in to the indices denoted by * the indices ndarray. * This is equivalent to: * a[indices] = element * * in numpy. * * @param indices the indices to put * @param element the element array to put * @return this array */ INDArray put(INDArray indices,INDArray element); /** * Put the elements of the ndarray * in to the specified indices * * @param indices the indices to put the ndarray in to * @param element the ndarray to put * @return this ndarray */ INDArray put(INDArrayIndex[] indices, INDArray element); /** * Put the elements of the ndarray * in to the specified indices * * @param indices the indices to put the ndarray in to * @param element the ndarray to put * @return this ndarray */ INDArray put(INDArrayIndex[] indices, Number element); /** * Inserts the element at the specified index * * @param indices the indices to insert into * @param element a scalar ndarray * @return a scalar ndarray of the element at this index */ INDArray put(int[] indices, INDArray element); /** * Inserts the element at the specified index * * @param i the row insert into * @param j the column to insert into * @param element a scalar ndarray * @return a scalar ndarray of the element at this index */ INDArray put(int i, int j, INDArray element); /** * Inserts the element at the specified index * * @param i the row insert into * @param j the column to insert into * @param element a scalar ndarray * @return a scalar ndarray of the element at this index */ INDArray put(int i, int j, Number element); /** * Inserts the element at the specified index * * @param i the index insert into * @param element a scalar ndarray * @return a scalar ndarray of the element at this index */ INDArray put(int i, INDArray element); /** * In place division of a column vector * * @param columnVector the column vector used for division * @return the result of the division */ INDArray diviColumnVector(INDArray columnVector); /** * Division of a column vector (copy) * * @param columnVector the column vector used for division * @return the result of the division */ INDArray divColumnVector(INDArray columnVector); /** * In place division of a row vector * * @param rowVector the row vector used for division * @return the result of the division */ INDArray diviRowVector(INDArray rowVector); /** * Division of a row vector (copy) * * @param rowVector the row vector used for division * @return the result of the division */ INDArray divRowVector(INDArray rowVector); /** * In place reverse divison of a column vector * * @param columnVector the column vector used for division * @return the result of the division */ INDArray rdiviColumnVector(INDArray columnVector); /** * Reverse division of a column vector (copy) * * @param columnVector the column vector used for division * @return the result of the division */ INDArray rdivColumnVector(INDArray columnVector); /** * In place reverse division of a column vector * * @param rowVector the row vector used for division * @return the result of the division */ INDArray rdiviRowVector(INDArray rowVector); /** * Reverse division of a column vector (copy) * * @param rowVector the row vector used for division * @return the result of the division */ INDArray rdivRowVector(INDArray rowVector); /** * In place multiplication of a column vector * * @param columnVector the column vector used for multiplication * @return the result of the multiplication */ INDArray muliColumnVector(INDArray columnVector); /** * Multiplication of a column vector (copy) * * @param columnVector the column vector used for multiplication * @return the result of the multiplication */ INDArray mulColumnVector(INDArray columnVector); /** * In place multiplication of a row vector * * @param rowVector the row vector used for multiplication * @return the result of the multiplication */ INDArray muliRowVector(INDArray rowVector); /** * Multiplication of a row vector (copy) * * @param rowVector the row vector used for multiplication * @return the result of the multiplication */ INDArray mulRowVector(INDArray rowVector); /** * In place reverse subtraction of a column vector * * @param columnVector the column vector to subtract * @return the result of the subtraction */ INDArray rsubiColumnVector(INDArray columnVector); /** * Reverse subtraction of a column vector (copy) * * @param columnVector the column vector to subtract * @return the result of the subtraction */ INDArray rsubColumnVector(INDArray columnVector); /** * In place reverse subtraction of a row vector * * @param rowVector the row vector to subtract * @return the result of the subtraction */ INDArray rsubiRowVector(INDArray rowVector); /** * Reverse subtraction of a row vector (copy) * * @param rowVector the row vector to subtract * @return the result of the subtraction */ INDArray rsubRowVector(INDArray rowVector); /** * In place subtraction of a column vector * * @param columnVector the column vector to subtract * @return the result of the subtraction */ INDArray subiColumnVector(INDArray columnVector); /** * Subtraction of a column vector (copy) * * @param columnVector the column vector to subtract * @return the result of the subtraction */ INDArray subColumnVector(INDArray columnVector); /** * In place subtraction of a row vector * * @param rowVector the row vector to subtract * @return the result of the subtraction */ INDArray subiRowVector(INDArray rowVector); /** * Subtraction of a row vector (copy) * * @param rowVector the row vector to subtract * @return the result of the subtraction */ INDArray subRowVector(INDArray rowVector); /** * In place addition of a column vector * * @param columnVector the column vector to add * @return the result of the addition */ INDArray addiColumnVector(INDArray columnVector); /** * In place assignment of a column vector * * @param columnVector the column vector to add * @return the result of the addition */ INDArray putiColumnVector(INDArray columnVector); /** * Addition of a column vector (copy) * * @param columnVector the column vector to add * @return the result of the addition */ INDArray addColumnVector(INDArray columnVector); /** * In place addition of a row vector * * @param rowVector the row vector to add * @return the result of the addition */ INDArray addiRowVector(INDArray rowVector); /** * in place assignment of row vector, to each row of this array * * @param rowVector Row vector to put * @return This array, after assigning every road to the specified value */ INDArray putiRowVector(INDArray rowVector); /** * Addition of a row vector (copy) * * @param rowVector the row vector to add * @return the result of the addition */ INDArray addRowVector(INDArray rowVector); INDArray mmul(INDArray other, MMulTranspose mMulTranspose); /** * Perform a copy matrix multiplication * * @param other the other matrix to perform matrix multiply with * @return the result of the matrix multiplication */ INDArray mmul(INDArray other); /** * Convert this ndarray to a 2d double matrix. * Note that THIS SHOULD NOT BE USED FOR SPEED. * This is mainly used for integrations with other libraries. * Due to nd4j's off heap nature, moving data on heap is very expensive * and should not be used if possible. * @return a copy of this array as a 2d double array */ double[][] toDoubleMatrix(); /** * Convert this ndarray to a 1d double matrix. * Note that THIS SHOULD NOT BE USED FOR SPEED. * This is mainly used for integrations with other libraries. * Due to nd4j's off heap nature, moving data on heap is very expensive * and should not be used if possible. * @return a copy of this array as a 1d double array */ double[] toDoubleVector(); /** * Convert this ndarray to a 1d float vector. * Note that THIS SHOULD NOT BE USED FOR SPEED. * This is mainly used for integrations with other libraries. * Due to nd4j's off heap nature, moving data on heap is very expensive * and should not be used if possible. * @return a copy of this array as a 1d float array */ float[] toFloatVector(); /** * Convert this ndarray to a 2d float matrix. * Note that THIS SHOULD NOT BE USED FOR SPEED. * This is mainly used for integrations with other libraries. * Due to nd4j's off heap nature, moving data on heap is very expensive * and should not be used if possible. * @return a copy of this array as a 2d float array */ float[][] toFloatMatrix(); /** * Convert this ndarray to a 1d int matrix. * Note that THIS SHOULD NOT BE USED FOR SPEED. * This is mainly used for integrations with other libraries. * Due to nd4j's off heap nature, moving data on heap is very expensive * and should not be used if possible. * @return a copy of this array as a 1d int array */ int[] toIntVector(); /** * Convert this ndarray to a 2d int matrix. * Note that THIS SHOULD NOT BE USED FOR SPEED. * This is mainly used for integrations with other libraries. * Due to nd4j's off heap nature, moving data on heap is very expensive * and should not be used if possible. * @return a copy of this array as a 2d int array */ int[][] toIntMatrix(); /** * Perform an copy matrix multiplication * * @param other the other matrix to perform matrix multiply with * @param result the result ndarray * @return the result of the matrix multiplication */ INDArray mmul(INDArray other, INDArray result); /** * Perform an copy matrix multiplication * * @param other the other matrix to perform matrix multiply with * @param result the result ndarray * @param mMulTranspose the transpose status of each array * @return the result of the matrix multiplication */ INDArray mmul(INDArray other, INDArray result,MMulTranspose mMulTranspose); /** * Copy (element wise) division of two NDArrays * * @param other the second ndarray to divide * @return the result of the divide */ INDArray div(INDArray other); /** * copy (element wise) division of two NDArrays * * @param other the second ndarray to divide * @param result the result ndarray * @return the result of the divide */ INDArray div(INDArray other, INDArray result); /** * copy (element wise) multiplication of two NDArrays * * @param other the second ndarray to multiply * @return the result of the addition */ INDArray mul(INDArray other); /** * copy (element wise) multiplication of two NDArrays * * @param other the second ndarray to multiply * @param result the result ndarray * @return the result of the multiplication */ INDArray mul(INDArray other, INDArray result); /** * copy subtraction of two NDArrays * * @param other the second ndarray to subtract * @return the result of the addition */ INDArray sub(INDArray other); /** * copy subtraction of two NDArrays * * @param other the second ndarray to subtract * @param result the result ndarray * @return the result of the subtraction */ INDArray sub(INDArray other, INDArray result); /** * Element-wise copy addition of two NDArrays * * @param other the second ndarray to add * @return the result of the addition */ INDArray add(INDArray other); /** * Element-wise copy addition of two NDArrays * * @param other the second ndarray to add * @param result the result ndarray * @return the result of the addition */ INDArray add(INDArray other, INDArray result); INDArray mmuli(INDArray other, MMulTranspose transpose); /** * Perform an inplace matrix multiplication * * @param other the other matrix to perform matrix multiply with * @return the result of the matrix multiplication */ INDArray mmuli(INDArray other); INDArray mmuli(INDArray other, INDArray result, MMulTranspose transpose); /** * Perform an inplace matrix multiplication * * @param other the other matrix to perform matrix multiply with * @param result the result ndarray * @return the result of the matrix multiplication */ INDArray mmuli(INDArray other, INDArray result); /** * in place (element wise) division of two NDArrays * * @param other the second ndarray to divide * @return the result of the divide */ INDArray divi(INDArray other); /** * in place (element wise) division of two NDArrays * * @param other the second ndarray to divide * @param result the result ndarray * @return the result of the divide */ INDArray divi(INDArray other, INDArray result); /** * in place (element wise) multiplication of two NDArrays * * @param other the second ndarray to multiply * @return the result of the multiplication */ INDArray muli(INDArray other); /** * in place (element wise) multiplication of two NDArrays * * @param other the second ndarray to multiply * @param result the result ndarray * @return the result of the multiplication */ INDArray muli(INDArray other, INDArray result); /** * in place (element wise) subtraction of two NDArrays * * @param other the second ndarray to subtract * @return the result of the subtraction */ INDArray subi(INDArray other); /** * in place (element wise) subtraction of two NDArrays * * @param other the second ndarray to subtract * @param result the result ndarray * @return the result of the subtraction */ INDArray subi(INDArray other, INDArray result); /** * in place (element wise) addition of two NDArrays * * @param other the second ndarray to add * @return the result of the addition */ INDArray addi(INDArray other); /** * in place (element wise) addition of two NDArrays * * @param other the second ndarray to add * @param result the result ndarray * @return the result of the addition */ INDArray addi(INDArray other, INDArray result); /** * Returns the max norm (aka infinity norm, equal to the maximum absolute value) along the specified dimension(s) * * @param dimension the dimension to the max norm along * @return Max norm along the specified dimension */ INDArray normmax(int... dimension); /** * Return the max norm (aka infinity norm, equal to the maximum absolute value) for the entire array * * @return Max norm for the entire array */ Number normmaxNumber(); /** * * @return */ IComplexNumber normmaxComplex(); /** * Returns the norm2 (L2 norm, sqrt(sum(x_i^2), also known as Euclidean norm) along the specified dimension(s) * * @param dimension the dimension to getScalar the norm2 along * @return the norm2 along the specified dimension */ INDArray norm2(int... dimension); /** * Return the norm2 (L2 norm, sqrt(sum(x_i^2), also known as Euclidean norm) for the entire array * * @return L2 norm for the array */ Number norm2Number(); /** * * @return */ IComplexNumber norm2Complex(); /** * Returns the norm1 (L1 norm, i.e., sum of absolute values; also known as Taxicab or Manhattan norm) along the * specified dimension * * @param dimension the dimension to getScalar the norm1 along * @return the norm1 along the specified dimension */ INDArray norm1(int... dimension); /** * Calculate and return norm1 (L1 norm, i.e., sum of absolute values; also known as Taxicab or Manhattan norm) for * the entire array * * @return Norm 1 for the array */ Number norm1Number(); /** * Calculate and return norm1 (L1 norm, i.e., sum of absolute values; also known as Taxicab or Manhattan norm) for * the entire array * * @return */ IComplexNumber norm1Complex(); /** * Standard deviation of an INDArray along one or more dimensions * * @param dimension the dimension to getScalar the std along * @return the standard deviation along a particular dimension */ INDArray std(int... dimension); /** * Calculate the standard deviation for the entire array * * @return */ Number stdNumber(); /** * Standard deviation of an ndarray along a dimension * * @param dimension the dimension to getScalar the std along * @return the standard deviation along a particular dimension */ INDArray std(boolean biasCorrected, int... dimension); /** * Calculate the standard deviation for the entire array, specifying whether it is bias corrected or not * * @param biasCorrected If true: bias corrected standard deviation. False: not bias corrected * @return Standard dev */ Number stdNumber(boolean biasCorrected); /** * * @return */ IComplexNumber stdComplex(); /** * Returns the product along a given dimension * * @param dimension the dimension to getScalar the product along * @return the product along the specified dimension */ INDArray prod(int... dimension); /** * Calculate the product of all values in the array * * @return Product of all values in the array */ Number prodNumber(); /** * * @return */ IComplexNumber prodComplex(); /** * Returns the overall mean of this ndarray * * @param dimension the dimension to getScalar the mean along * @return the mean along the specified dimension of this ndarray */ INDArray mean(int... dimension); /** * Returns the overall mean of this ndarray * * @param dimension the dimension to getScalar the mean along * @return the mean along the specified dimension of this ndarray */ INDArray mean(INDArray result, int... dimension); /** * Returns the absolute overall mean of this ndarray * * @param dimension the dimension to getScalar the mean along * @return the mean along the specified dimension of this ndarray */ INDArray amean(int... dimension); /** * Returns the overall mean of this ndarray * * @return the mean along the specified dimension of this ndarray */ Number meanNumber(); /** * Returns the absolute overall mean of this ndarray * * @return the mean along the specified dimension of this ndarray */ Number ameanNumber(); IComplexNumber meanComplex(); /** * Returns the overall variance of this ndarray * * @param dimension the dimension to getScalar the mean along * @return the mean along the specified dimension of this ndarray */ INDArray var(int... dimension); /** * Returns the overall variance of this ndarray * * @param biasCorrected boolean on whether to apply corrected bias * @param dimension the dimension to getScalar the mean along * @return the mean along the specified dimension of this ndarray */ INDArray var(boolean biasCorrected, int... dimension); /** * Returns the overall variance of all values in this INDArray * * @return variance */ Number varNumber(); /** * * @return */ IComplexNumber varComplex(); /** * Returns the overall max of this ndarray along given dimensions * * @param dimension the dimension to getScalar the mean along * @return the mean along the specified dimension of this ndarray */ INDArray max(int... dimension); /** * Returns the absolute overall max of this ndarray along given dimensions * * @param dimension the dimension to getScalar the mean along * @return the mean along the specified dimension of this ndarray */ INDArray amax(int... dimension); /** * Returns maximum value in this INDArray * @return maximum value */ Number maxNumber(); /** * Returns maximum (absolute) value in this INDArray * @return Max absolute value */ Number amaxNumber(); /** * * @return */ IComplexNumber maxComplex(); /** * Returns the overall min of this ndarray * * @param dimension the dimension to getScalar the mean along * @return the mean along the specified dimension of this ndarray */ INDArray min(int... dimension); /** * Returns minimum (absolute) value in this INDArray, along the specified dimensions * * @return Minimum absolute value */ INDArray amin(int... dimension); /** * Returns min value in this INDArray * @return Minimum value in the array */ Number minNumber(); /** * Returns absolute min value in this INDArray * * @return Absolute min value */ Number aminNumber(); IComplexNumber minComplex(); /** * Returns the sum along the last dimension of this ndarray * * @param dimension the dimension to getScalar the sum along * @return the sum along the specified dimension of this ndarray */ INDArray sum(int... dimension); /** * This method takes boolean condition, and returns number of elements matching this condition * * @param condition Condition to calculate matches for * @return Number of elements matching condition */ Number scan(Condition condition); /** * Returns the sum along the last dimension of this ndarray * * @param result result of this operation will be stored here * @param dimension the dimension to getScalar the sum along * @return the sum along the specified dimension of this ndarray */ INDArray sum(INDArray result, int... dimension); /** * Sum the entire array * @return Sum of array */ Number sumNumber(); /** * Returns entropy value for this INDArray * @return */ Number entropyNumber(); /** * Returns non-normalized Shannon entropy value for this INDArray * @return */ Number shannonEntropyNumber(); /** * Returns log entropy value for this INDArray * @return */ Number logEntropyNumber(); /** * Returns entropy value for this INDArray along specified dimension(s) * @return */ INDArray entropy(int... dimension); /** * Returns entropy value for this INDArray along specified dimension(s) * @return */ INDArray shannonEntropy(int... dimension); /** * Returns entropy value for this INDArray along specified dimension(s) * @return */ INDArray logEntropy(int... dimension); /** * Sum the entire array * @return */ IComplexNumber sumComplex(); /** * stride setter * @param stride * @deprecated, use {@link #reshape(int...) } */ @Deprecated void setStride(int... stride); /** * Shape setter * @param shape * @deprecated, use {@link #reshape(int...) } */ @Deprecated void setShape(int... shape); /** * Shape and stride setter * @param shape * @param stride */ public void setShapeAndStride(int[] shape, int[] stride); /** * Set the ordering * @param order the ordering to set */ void setOrder(char order); /** * Sub array based on the * pre calculated shape,strides, offsets * @param resolution the resolution to use * @return the sub array based on the calculations from the resolution */ INDArray subArray(ShapeOffsetResolution resolution); //INDArray subArray(ShapeOffsetResolution resolution, ShapeOffsetResolution resolutionWithoutNewAxis); /** * @param offsets * @param shape * @param stride * @return */ INDArray subArray(long[] offsets, int[] shape, int[] stride); /** * Returns the elements at the the specified indices * * @param indices the indices to getScalar * @return the array with the specified elements */ INDArray getScalar(int... indices); /** * Get an integer value at the specified indices. Result will be cast to an integer, precision loss is possible. * @param indices Indices to get the integer at. Number of indices must match the array rank. * @return Integer value at the specified index */ int getInt(int... indices); /** * Get a double value at the specified indices. * @param indices Indices to get the double at. Number of indices must match the array rank. * @return Double value at the specified index */ double getDouble(int... indices); /** * Returns the elements at the the specified indices * * @param indices the indices to getScalar * @return the array with the specified elements */ float getFloat(int[] indices); /** * Get the double value at the specified linear index in the array * * @param i Index * @return Double value at the specified index */ double getDouble(int i); /** * Get the double value at the specified indices. Can only be used for 2D (rank 2) arrays. * * @param i Dimension 0 (row) index * @param j Dimension 1 (column) index * @return */ double getDouble(int i, int j); /** * Return the item at the linear index i * * @param i the index of the item to getScalar * @return the item at index j */ float getFloat(int i); /** * Return the item at row i column j * Note that this is the same as calling getScalar(new int[]{i,j} * * @param i the row to getScalar * @param j the column to getScalar * @return the item at row i column j */ float getFloat(int i, int j); /** * Returns a copy of this ndarray * * @return a copy of this ndarray */ INDArray dup(); /** * Returns a copy of this ndarray, where the returned ndarray has the specified order * * @param order order of the NDArray. 'f' or 'c' * @return copy of ndarray with specified order */ INDArray dup(char order); /** * Returns a flattened version (row vector) of this ndarray * * @return a flattened version (row vector) of this ndarray */ INDArray ravel(); /** * Returns a flattened version (row vector) of this ndarray * * @return a flattened version (row vector) of this ndarray */ INDArray ravel(char order); /** * * @param data */ void setData(DataBuffer data); /** * Returns the number of slices in this ndarray * * @return the number of slices in this ndarray */ int slices(); /** * Get the number of trailing ones in the array shape. For example, a rank 3 array with shape [10, 1, 1] would * return 2 for this method * * @return Number of trailing ones in shape */ int getTrailingOnes(); /** * Get the number of leading ones in the array shape. For example, a rank 3 array with shape [1, 10, 1] would * return value 1 for this method * * @return Number of leading ones in shape */ int getLeadingOnes(); /** * Returns the specified slice of this ndarray * * @param i the index of the slice to return * @param dimension the dimension to return the slice for * @return the specified slice of this ndarray */ INDArray slice(int i, int dimension); /** * Returns the specified slice of this ndarray * * @param i the index of the slice to return * @return the specified slice of this ndarray */ INDArray slice(int i); /** * Returns the start of where the ndarray is * for the underlying data * * @return the starting offset */ long offset(); /** * Returns the start of where the ndarray is for the original data buffer * @return */ long originalOffset(); /** * Reshapes the ndarray (can't change the length of the ndarray). Typically this will be a view, unless reshaping * without copying is impossible. * * @param newShape the new shape of the ndarray * @return the reshaped ndarray */ INDArray reshape(char order, int... newShape); /** * Reshapes the ndarray (can't change the length of the ndarray). Typically this will be a view, unless reshaping * without copying is impossible. * * @param rows the rows of the matrix * @param columns the columns of the matrix * @return the reshaped ndarray */ INDArray reshape(char order, int rows, int columns); /** * Reshapes the ndarray (can't change the length of the ndarray). Typically this will be a view, unless reshaping * without copying is impossible. * * @param newShape the new shape of the ndarray * @return the reshaped ndarray */ INDArray reshape(int... newShape); /** * Reshapes the ndarray (can't change the length of the ndarray). Typically this will be a view, unless reshaping * without copying is impossible. * * @param rows the rows of the matrix * @param columns the columns of the matrix * @return the reshaped ndarray */ INDArray reshape(int rows, int columns); /** * Flip the rows and columns of a matrix * * @return the flipped rows and columns of a matrix */ INDArray transpose(); /** * Flip the rows and columns of a matrix, in-place * * @return the flipped rows and columns of a matrix */ INDArray transposei(); /** * Mainly here for people coming from numpy. * This is equivalent to a call to permute * * @param dimension the dimension to swap * @param with the one to swap it with * @return the swapped axes view */ INDArray swapAxes(int dimension, int with); /** * See: http://www.mathworks.com/help/matlab/ref/permute.html * * @param rearrange the dimensions to swap to * @return the newly permuted array */ INDArray permute(int... rearrange); /** * An in-place version of permute. The array shape information (shape, strides) * is modified by this operation (but not the data itself) * See: http://www.mathworks.com/help/matlab/ref/permute.html * * @param rearrange the dimensions to swap to * @return the current array */ INDArray permutei(int... rearrange); /** * Dimshuffle: an extension of permute that adds the ability * to broadcast various dimensions. * This will only accept integers and xs. *

* An x indicates a dimension should be broadcasted rather than permuted. * * Examples originally from the theano docs: * http://deeplearning.net/software/theano/library/tensor/basic.html * * Returns a view of this tensor with permuted dimensions. Typically the pattern will include the integers 0, 1, ... ndim-1, and any number of ‘x’ characters in dimensions where this tensor should be broadcasted. A few examples of patterns and their effect: (‘x’) -> make a 0d (scalar) into a 1d vector (0, 1) -> identity for 2d vectors (1, 0) -> inverts the first and second dimensions (‘x’, 0) -> make a row out of a 1d vector (N to 1xN) (0, ‘x’) -> make a column out of a 1d vector (N to Nx1) (2, 0, 1) -> AxBxC to CxAxB (0, ‘x’, 1) -> AxB to Ax1xB (1, ‘x’, 0) -> AxB to Bx1xA (1,) -> This remove dimensions 0. It must be a broadcastable dimension (1xA to A) * @param rearrange the dimensions to swap to * @param newOrder the new order (think permute) * @param broadCastable (whether the dimension is broadcastable) (must be same length as new order) * @return the newly permuted array */ INDArray dimShuffle(Object[] rearrange, int[] newOrder, boolean[] broadCastable); /** * Returns the specified column. * Throws an exception if its not a matrix * * @param i the column to getScalar * @return the specified column */ INDArray getColumn(int i); /** * Returns the specified row. * Throws an exception if its not a matrix * * @param i the row to getScalar * @return the specified row */ INDArray getRow(int i); /** * Returns the number of columns in this matrix (throws exception if not 2d) * * @return the number of columns in this matrix */ int columns(); /** * Returns the number of rows in this matrix (throws exception if not 2d) * * @return the number of rows in this matrix */ int rows(); /** * Returns true if the number of columns is 1 * * @return true if the number of columns is 1 */ boolean isColumnVector(); /** * Returns true if the number of rows is 1 * * @return true if the number of rows is 1 */ boolean isRowVector(); /** * Returns true if the number of columns is 1 * * @return true if the number of columns is 1 */ boolean isColumnVectorOrScalar(); /** * Returns true if the number of rows is 1 * * @return true if the number of rows is 1 */ boolean isRowVectorOrScalar(); /** * Returns true if this ndarray is a vector * * @return whether this ndarray is a vector */ boolean isVector(); /** * Returns true if this ndarray is a vector or scalar * * @return whether this ndarray is a vector or scalar */ boolean isVectorOrScalar(); /** * Returns whether the matrix * has the same rows and columns * * @return true if the matrix has the same rows and columns * false otherwise */ boolean isSquare(); /** * Returns true if this ndarray is a matrix * * @return whether this ndarray is a matrix */ boolean isMatrix(); /** * Returns true if this ndarray is a scalar * * @return whether this ndarray is a scalar */ boolean isScalar(); /** * Returns the shape of this ndarray * * @return the shape of this ndarray */ int[] shape(); /** * Returns the stride of this ndarray * * @return the stride of this ndarray */ int[] stride(); /** * Return the ordering (fortran or c 'f' and 'c' respectively) of this ndarray * @return the ordering of this ndarray */ char ordering(); /** * Returns the size along a specified dimension * * @param dimension the dimension to return the size for * @return the size of the array along the specified dimension */ int size(int dimension); /** * Returns the total number of elements in the ndarray * * @return the number of elements in the ndarray */ int length(); /** * Returns the total number of elements in the ndarray * * @return the number of elements in the ndarray */ long lengthLong(); /** * Broadcasts this ndarray to be the specified shape * * @param shape the new shape of this ndarray * @return the broadcasted ndarray */ INDArray broadcast(int... shape); /** * Broadcasts this ndarray to be the specified shape * * @return the broadcasted ndarray */ INDArray broadcast(INDArray result); /** * Returns a scalar (individual element) * of a scalar ndarray * * @return the individual item in this ndarray */ Object element(); /** * Returns a linear double array representation of this ndarray * * @return the linear double array representation of this ndarray */ DataBuffer data(); /** * * @param n * @return */ IComplexNDArray rdiv(IComplexNumber n); /** * * @param n * @return */ IComplexNDArray rdivi(IComplexNumber n); /** * * @param n * @return */ IComplexNDArray rsub(IComplexNumber n); /** * * @param n * @return */ IComplexNDArray rsubi(IComplexNumber n); /** * * @param n * @return */ IComplexNDArray div(IComplexNumber n); /** * * @param n * @return */ IComplexNDArray divi(IComplexNumber n); /** * * @param n * @return */ IComplexNDArray mul(IComplexNumber n); /** * * @param n * @return */ IComplexNDArray muli(IComplexNumber n); /** * * @param n * @return */ IComplexNDArray sub(IComplexNumber n); /** * * @param n * @return */ IComplexNDArray subi(IComplexNumber n); /** * * @param n * @return */ IComplexNDArray add(IComplexNumber n); /** * * @param n * @return */ IComplexNDArray addi(IComplexNumber n); /** * * @param n * @param result * @return */ IComplexNDArray rdiv(IComplexNumber n, IComplexNDArray result); /** * * @param n * @param result * @return */ IComplexNDArray rdivi(IComplexNumber n, IComplexNDArray result); /** * * @param n * @param result * @return */ IComplexNDArray rsub(IComplexNumber n, IComplexNDArray result); /** * * @param n * @param result * @return */ IComplexNDArray rsubi(IComplexNumber n, IComplexNDArray result); /** * * @param n * @param result * @return */ IComplexNDArray div(IComplexNumber n, IComplexNDArray result); /** * * @param n * @param result * @return */ IComplexNDArray divi(IComplexNumber n, IComplexNDArray result); /** * * @param n * @param result * @return */ IComplexNDArray mul(IComplexNumber n, IComplexNDArray result); /** * * @param n * @param result * @return */ IComplexNDArray muli(IComplexNumber n, IComplexNDArray result); /** * * @param n * @param result * @return */ IComplexNDArray sub(IComplexNumber n, IComplexNDArray result); /** * * @param n * @param result * @return */ IComplexNDArray subi(IComplexNumber n, IComplexNDArray result); /** * * @param n * @param result * @return */ IComplexNDArray add(IComplexNumber n, IComplexNDArray result); /** * * @param n * @param result * @return */ IComplexNDArray addi(IComplexNumber n, IComplexNDArray result); /** * This method checks 2 INDArrays equality with given eps * * @param o * @param eps Epsilon value to use for the quality operation * @return */ boolean equalsWithEps(Object o, double eps); /** * Perform efficient (but unsafe) duplication. Don't use this method unless you know exactly what you are doing. * Instead, use {@link #dup()} * * @return Unsafe duplicate of array */ INDArray unsafeDuplication(); /** * Perform efficient (but unsafe) duplication. Don't use this method unless you know exactly what you are doing. * Instead, use {@link #dup()} * * @return Unsafe duplicate of array */ INDArray unsafeDuplication(boolean blocking); /** * Remainder operator * @param denominator the denominator * @return */ INDArray remainder(INDArray denominator); /** * Remainder operator * @param denominator the denominator * @param result the result array to put this in * @return */ INDArray remainder(INDArray denominator, INDArray result); /** * The scalar denominator * @param denominator the denominator as a scalar * @return */ INDArray remainder(Number denominator); /** * * @param denominator * @param result * @return */ INDArray remainder(Number denominator, INDArray result); /** * In place remainder * @param denominator * @return */ INDArray remainderi(INDArray denominator); /** * In place remainder * @param denominator * @return */ INDArray remainderi(Number denominator); /** * remainder of division * @param denominator the array of denominators for each element * in this array * @return */ INDArray fmod(INDArray denominator); /** * remainder of division * @param denominator the * @param result the result array * @return */ INDArray fmod(INDArray denominator, INDArray result); /** * * @param denominator * @return */ INDArray fmod(Number denominator); INDArray fmod(Number denominator, INDArray result); /** * In place fmod * @param denominator * @return */ INDArray fmodi(INDArray denominator); /** * In place fmod * @param denominator * @return */ INDArray fmodi(Number denominator); /** * This method returns index of highest value along specified dimension(s) * * @param dimension Dimension along which to perform the argMax operation * @return Array containing indices */ INDArray argMax(int... dimension); /** * This method returns True, if this INDArray instance is attached to some Workspace. False otherwise. * @return True if attached to workspace, false otherwise */ boolean isAttached(); /** * This method checks, if given attached INDArray is still in scope of its parent Workspace * * PLEASE NOTE: if this INDArray isn't attached to any Workspace, this method will return true * @return */ boolean isInScope(); /** * This method detaches INDArray from Workspace, returning copy. * Basically it's dup() into new memory chunk. * * PLEASE NOTE: If this INDArray instance is NOT attached - it will be returned unmodified. * * @return The attached copy of array, or original if not in workspace */ INDArray detach(); /** * This method detaches INDArray from current Workspace, and attaches it to Workspace above, if any. * * PLEASE NOTE: If this INDArray instance is * NOT attached - it will be returned unmodified. * PLEASE NOTE: If current Workspace is the top-tier one, * effect will be equal to detach() call - detached copy will be returned * * @return */ INDArray leverage(); /** * This method detaches INDArray from current Workspace, and attaches it to Workspace with a given Id - if a workspace * with that ID exists. If no workspace with the specified ID exists, the current INDArray is returned unmodified. * * @param id ID of the workspace to leverage to * @return * @see #leverageTo(String, boolean) */ INDArray leverageTo(String id); /** * This method detaches INDArray from current Workspace, and attaches it to Workspace with a given Id. * If enforceExistence == true, and no workspace with the specified ID exists, then an {@link Nd4jNoSuchWorkspaceException} * is thrown. Otherwise, if enforceExistance == false and no workspace with the specified ID exists, then the current * INDArray is returned unmodified (same as {@link #leverage()} * * @param id ID of the workspace to leverage to * @param enforceExistence If true, and the specified workspace does not exist: an {@link Nd4jNoSuchWorkspaceException} * will be thrown. * @return The INDArray, leveraged to the specified workspace * @see #leverageTo(String) */ INDArray leverageTo(String id, boolean enforceExistence) throws Nd4jNoSuchWorkspaceException; /** * This method detaches INDArray from current Workspace, and attaches it to Workspace with a given Id, if a workspace * with the given ID is open and active. * * If the workspace does not exist, or is not active, the array is detached from any workspaces. * * @param id ID of the workspace to leverage to * @return The INDArray, leveraged to the specified workspace (if it exists and is active) otherwise the detached array * @see #leverageTo(String) */ INDArray leverageOrDetach(String id); /** * This method pulls this INDArray into current Workspace. * * PLEASE NOTE: If there's no current Workspace - INDArray returned as is * * @return Migrated INDArray or this if no current workspace * @see #migrate(boolean) */ INDArray migrate(); /** * This method pulls this INDArray into current Workspace, or optionally detaches if no workspace is present.
* That is:
* If current workspace is present/active, INDArray is migrated to it.
* If no current workspace is present/active, one of two things occur: * 1. If detachOnNoWs arg is true: if there is no current workspace, INDArray is detached * 2. If detachOnNoWs arg is false: this INDArray is returned as-is (no-op) - equivalent to {@link #migrate()} * * @param detachOnNoWs If true: detach on no WS. If false and no workspace: return this. * @return Migrated INDArray */ INDArray migrate(boolean detachOnNoWs); /** * This method returns percentile value for this INDArray * * @param percentile target percentile in range of 0..100 * @return */ Number percentileNumber(Number percentile); /** * This method returns median value for this INDArray * * @return Median value for array */ Number medianNumber(); /** * This method returns median along given dimension(s) * @param dimension * @return Median along specified dimensions */ INDArray median(int... dimension); /** * This method returns median along given dimension(s) * @param percentile target percentile in range of 0..100 * @param dimension Dimension to calculate percentile for * @return */ INDArray percentile(Number percentile, int... dimension); /** * ------------ Sparse methods ------------ */ /** * Return a array of non-major pointers * i.e. return the column indexes in case of row-major ndarray * @return a DataBuffer of indexes * */ DataBuffer getVectorCoordinates(); /** * Return a dense representation of the sparse ndarray * */ INDArray toDense(); /** * Return the number of non-null element * @return nnz * */ int nnz(); /** * Return the sparse format (i.e COO, CSR, ...) * @return format * @see SparseFormat * */ SparseFormat getFormat(); int[] flags(); int[] hiddenDimensions(); int[] sparseOffsets(); int underlyingRank(); /** * Add an {@link INDArray} * to flatbuffers builder * @param builder the builder to use * @return the offset to add */ int toFlatArray(FlatBufferBuilder builder); INDArray convertToFloats(); INDArray convertToDoubles(); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy