org.nd4j.linalg.api.ndarray.NdArrayJSONReader Maven / Gradle / Ivy
package org.nd4j.linalg.api.ndarray;
import org.apache.commons.io.FileUtils;
import org.apache.commons.io.LineIterator;
import org.nd4j.linalg.factory.Nd4j;
import java.io.File;
import java.io.IOException;
/**
* Created by susaneraly on 6/16/16.
*/
@Deprecated
public class NdArrayJSONReader {
public INDArray read(File jsonFile) {
INDArray result = this.loadNative(jsonFile);
if (result == null) {
//Must write support for parsing/normal json parsing - which will be inefficient
this.loadNonNative(jsonFile);
}
return result;
}
private INDArray loadNative(File jsonFile) {
/*
We could dump an ndarray to a file with the tostring (since that is valid json) and use put/get to parse it as json
But here we leverage our information of the tostring method to be more efficient
With our current toString format we use tads along dimension (rank-1,rank-2) to write to the array in two dimensional chunks at a time.
This is more efficient than setting each value at a time with putScalar.
This also means we can read the file one line at a time instead of loading the whole thing into memory
Future work involves enhancing the write json method to provide more features to make the load more efficient
*/
int lineNum = 0;
int rowNum = 0;
int tensorNum = 0;
char theOrder = 'c';
int[] theShape = {1, 1};
int rank = 0;
double[][] subsetArr = {{0.0, 0.0}, {0.0, 0.0}};
INDArray newArr = Nd4j.zeros(2, 2);
try {
LineIterator it = FileUtils.lineIterator(jsonFile);
try {
while (it.hasNext()) {
String line = it.nextLine();
lineNum++;
line = line.replaceAll("\\s", "");
if (line.equals("") || line.equals("}"))
continue;
// is it from dl4j?
if (lineNum == 2) {
String[] lineArr = line.split(":");
String fileSource = lineArr[1].replaceAll("\\W", "");
if (!fileSource.equals("dl4j"))
return null;
}
// parse ordering
if (lineNum == 3) {
String[] lineArr = line.split(":");
theOrder = lineArr[1].replace("\\W", "").charAt(0);
continue;
}
// parse shape
if (lineNum == 4) {
String[] lineArr = line.split(":");
String dropJsonComma = lineArr[1].split("]")[0];
String[] shapeString = dropJsonComma.replace("[", "").split(",");
rank = shapeString.length;
theShape = new int[rank];
for (int i = 0; i < rank; i++) {
try {
theShape[i] = Integer.parseInt(shapeString[i]);
} catch (NumberFormatException nfe) {
} ;
}
subsetArr = new double[theShape[rank - 2]][theShape[rank - 1]];
newArr = Nd4j.zeros(theShape, theOrder);
continue;
}
//parse data
if (lineNum > 5) {
String[] entries =
line.replace("\\],", "").replaceAll("\\[", "").replaceAll("\\]", "").split(",");
for (int i = 0; i < theShape[rank - 1]; i++) {
try {
subsetArr[rowNum][i] = Double.parseDouble(entries[i]);
} catch (NumberFormatException nfe) {
}
}
rowNum++;
if (rowNum == theShape[rank - 2]) {
INDArray subTensor = Nd4j.create(subsetArr);
newArr.tensorAlongDimension(tensorNum, rank - 1, rank - 2).addi(subTensor);
rowNum = 0;
tensorNum++;
}
}
}
} finally {
LineIterator.closeQuietly(it);
}
} catch (IOException e) {
throw new RuntimeException("Error reading input", e);
}
return newArr;
}
private INDArray loadNonNative(File jsonFile) {
/* WIP
JSONTokener tokener = new JSONTokener(new FileReader("test.json"));
JSONObject obj = new JSONObject(tokener);
JSONArray objArr = obj.optJSONArray("shape");
int rank = objArr.length();
int[] theShape = new int[rank];
int rows = 1;
for (int i = 0; i < rank; ++i) {
theShape[i] = objArr.optInt(i);
if (i != objArr.length() - 1)
rows *= theShape[i];
}
*/
System.out.println("API_Error: Current support only for files written from dl4j");
return null;
}
}