Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.nd4j.linalg.checkutil.NDArrayCreationUtil Maven / Gradle / Ivy
package org.nd4j.linalg.checkutil;
import org.apache.commons.lang3.ArrayUtils;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.linalg.primitives.Pair;
import org.nd4j.linalg.util.ArrayUtil;
import java.util.*;
/**
*
* This class contains utility methods for generating NDArrays for use in unit tests
* The idea is to generate arrays with a specific shape, after various operations have been undertaken on them
* So output is after get, reshape, transpose, permute, tensorAlongDimension etc operations have been done
* Most useful methods:
* - getAllTestMatricesWithShape
* - getAll4dTestArraysWithShape
* - getAll4dTestArraysWithShape
* @author Alex Black
*/
public class NDArrayCreationUtil {
private NDArrayCreationUtil() {}
/** Get an array of INDArrays (2d) all with the specified shape. Pair returned to aid
* debugging: String contains information on how to reproduce the matrix (i.e., which function, and arguments)
* Each NDArray in the returned array has been obtained by applying an operation such as transpose, tensorAlongDimension,
* etc to an original array.
*/
public static List> getAllTestMatricesWithShape(char ordering, int rows, int cols,
int seed) {
List> all = new ArrayList<>();
Nd4j.getRandom().setSeed(seed);
all.add(new Pair<>(Nd4j.linspace(1, rows * cols, rows * cols).reshape(ordering, rows, cols),
"Nd4j..linspace(1,rows * cols,rows * cols).reshape(rows,cols)"));
all.add(getTransposedMatrixWithShape(ordering, rows, cols, seed));
all.addAll(getSubMatricesWithShape(ordering, rows, cols, seed));
all.addAll(getTensorAlongDimensionMatricesWithShape(ordering, rows, cols, seed));
all.add(getPermutedWithShape(ordering, rows, cols, seed));
all.add(getReshapedWithShape(ordering, rows, cols, seed));
return all;
}
/** Get an array of INDArrays (2d) all with the specified shape. Pair returned to aid
* debugging: String contains information on how to reproduce the matrix (i.e., which function, and arguments)
* Each NDArray in the returned array has been obtained by applying an operation such as transpose, tensorAlongDimension,
* etc to an original array.
*/
public static List> getAllTestMatricesWithShape(int rows, int cols, int seed) {
List> all = new ArrayList<>();
Nd4j.getRandom().setSeed(seed);
all.add(new Pair<>(Nd4j.linspace(1, rows * cols, rows * cols).reshape(rows, cols),
"Nd4j..linspace(1,rows * cols,rows * cols).reshape(rows,cols)"));
all.add(getTransposedMatrixWithShape(rows, cols, seed));
all.addAll(getSubMatricesWithShape(rows, cols, seed));
all.addAll(getTensorAlongDimensionMatricesWithShape(rows, cols, seed));
all.add(getPermutedWithShape(rows, cols, seed));
all.add(getReshapedWithShape(rows, cols, seed));
return all;
}
/**
* Test utility to sweep shapes given a rank
* Given a rank will generate random test matrices that will cover all cases of a shape with a '1' anywhere in the shape
* as well a shape with random ints that are not 0 or 1
* eg. rank 2: 1,1; 1,2; 2,1; 2,2; 3,4
* Motivated by TADs that often hit bugs when a "1" occurs as the size of a dimension
*
* @param rank any rank including true scalars i.e rank >= 0
* @param order what order array to return i.e 'c' or 'f' order arrays
* @return List of arrays and the shapes as strings
*/
public static List> getTestMatricesWithVaryingShapes(int rank, char order) {
List> all = new ArrayList<>();
if (rank == 0) {
//scalar
all.add(new Pair<>(Nd4j.trueScalar(Nd4j.rand(1, 1).getDouble(0)), "{}"));
return all;
}
//generate all possible combinations with a 1 and a 2
int maxCount = (int) Math.pow(2.0, rank);
int[] defaultOnes = new int[rank];
Arrays.fill(defaultOnes, 1);
//use binary and just add 1
for (int i = 0; i < maxCount; i++) {
int num = i;
int[] iShape = ArrayUtils.clone(defaultOnes);
int b = 0;
while (num > 0) {
iShape[b] = (num % 2) + 1;
b++;
num /= 2;
}
all.add(new Pair<>(Nd4j.rand(order, iShape), ArrayUtils.toString(iShape)));
}
// add a random shape of correct rank with elements > 2 that is not too big
int[] aRandomShape = new int[rank];
Random ran = new Random();
for (int i = 0; i < rank; i++) {
aRandomShape[i] = 2 + ran.nextInt(6);
}
all.add(new Pair<>(Nd4j.rand(order, aRandomShape), ArrayUtils.toString(aRandomShape)));
return all;
}
public static Pair getTransposedMatrixWithShape(char ordering, int rows, int cols, int seed) {
Nd4j.getRandom().setSeed(seed);
INDArray out = Nd4j.linspace(1, rows * cols, rows * cols).reshape(ordering, cols, rows);
return new Pair<>(out.transpose(), "getTransposedMatrixWithShape(" + rows + "," + cols + "," + seed + ")");
}
public static Pair getTransposedMatrixWithShape(int rows, int cols, int seed) {
Nd4j.getRandom().setSeed(seed);
INDArray out = Nd4j.linspace(1, rows * cols, rows * cols).reshape(cols, rows);
return new Pair<>(out.transpose(), "getTransposedMatrixWithShape(" + rows + "," + cols + "," + seed + ")");
}
public static List> getSubMatricesWithShape(int rows, int cols, int seed) {
return getSubMatricesWithShape(Nd4j.order(), rows, cols, seed);
}
public static List> getSubMatricesWithShape(char ordering, int rows, int cols, int seed) {
//Create 3 identical matrices. Could do get() on single original array, but in-place modifications on one
//might mess up tests for another
Nd4j.getRandom().setSeed(seed);
int[] shape = new int[] {2 * rows + 4, 2 * cols + 4};
int len = ArrayUtil.prod(shape);
INDArray orig = Nd4j.linspace(1, len, len).reshape(ordering, shape);
INDArray first = orig.get(NDArrayIndex.interval(0, rows), NDArrayIndex.interval(0, cols));
Nd4j.getRandom().setSeed(seed);
orig = Nd4j.linspace(1, len, len).reshape(shape);
INDArray second = orig.get(NDArrayIndex.interval(3, rows + 3), NDArrayIndex.interval(3, cols + 3));
Nd4j.getRandom().setSeed(seed);
orig = Nd4j.linspace(1, len, len).reshape(ordering, shape);
INDArray third = orig.get(NDArrayIndex.interval(rows, 2 * rows), NDArrayIndex.interval(cols, 2 * cols));
String baseMsg = "getSubMatricesWithShape(" + rows + "," + cols + "," + seed + ")";
List> list = new ArrayList<>(3);
list.add(new Pair<>(first, baseMsg + ".get(0)"));
list.add(new Pair<>(second, baseMsg + ".get(1)"));
list.add(new Pair<>(third, baseMsg + ".get(2)"));
return list;
}
public static List> getTensorAlongDimensionMatricesWithShape(char ordering, int rows,
int cols, int seed) {
Nd4j.getRandom().setSeed(seed);
//From 3d NDArray: do various tensors. One offset 0, one offset > 0
//[0,1], [0,2], [1,0], [1,2], [2,0], [2,1]
INDArray[] out = new INDArray[12];
INDArray temp01 = Nd4j.linspace(1, cols * rows * 4, cols * rows * 4).reshape(cols, rows, 4);
out[0] = temp01.javaTensorAlongDimension(0, 0, 1).reshape(rows, cols);
int[] temp01Shape = new int[] {cols, rows, 4};
int len = ArrayUtil.prod(temp01Shape);
temp01 = Nd4j.linspace(1, len, len).reshape(temp01Shape);
out[1] = temp01.javaTensorAlongDimension(2, 0, 1).reshape(rows, cols);
Nd4j.getRandom().setSeed(seed);
INDArray temp02 = Nd4j.linspace(1, len, len).reshape(new int[] {cols, 4, rows});
out[2] = temp02.javaTensorAlongDimension(0, 0, 2).reshape(rows, cols);
temp02 = Nd4j.linspace(1, len, len).reshape(cols, 4, rows);
out[3] = temp02.javaTensorAlongDimension(2, 0, 2).reshape(rows, cols);
INDArray temp10 = Nd4j.linspace(1, len, len).reshape(rows, cols, 4);
out[4] = temp10.javaTensorAlongDimension(0, 1, 0).reshape(rows, cols);
temp10 = Nd4j.linspace(1, len, len).reshape(rows, cols, 4);
out[5] = temp10.javaTensorAlongDimension(2, 1, 0).reshape(rows, cols);
INDArray temp12 = Nd4j.linspace(1, len, len).reshape(4, cols, rows);
out[6] = temp12.javaTensorAlongDimension(0, 1, 2).reshape(rows, cols);
temp12 = Nd4j.linspace(1, len, len).reshape(4, cols, rows);
out[7] = temp12.javaTensorAlongDimension(2, 1, 2).reshape(rows, cols);
INDArray temp20 = Nd4j.linspace(1, len, len).reshape(rows, 4, cols);
out[8] = temp20.javaTensorAlongDimension(0, 2, 0).reshape(rows, cols);
temp20 = Nd4j.linspace(1, len, len).reshape(rows, 4, cols);
out[9] = temp20.javaTensorAlongDimension(2, 2, 0).reshape(rows, cols);
INDArray temp21 = Nd4j.linspace(1, len, len).reshape(4, rows, cols);
out[10] = temp21.javaTensorAlongDimension(0, 2, 1).reshape(rows, cols);
temp21 = Nd4j.linspace(1, len, len).reshape(4, rows, cols);
out[11] = temp21.javaTensorAlongDimension(2, 2, 1).reshape(rows, cols);
String baseMsg = "getTensorAlongDimensionMatricesWithShape(" + rows + "," + cols + "," + seed + ")";
List> list = new ArrayList<>(12);
for (int i = 0; i < out.length; i++)
list.add(new Pair<>(out[i], baseMsg + ".get(" + i + ")"));
return list;
}
public static List> getTensorAlongDimensionMatricesWithShape(int rows, int cols, int seed) {
return getTensorAlongDimensionMatricesWithShape(Nd4j.order(), rows, cols, seed);
}
public static Pair getPermutedWithShape(char ordering, int rows, int cols, int seed) {
Nd4j.getRandom().setSeed(seed);
int len = rows * cols;
INDArray arr = Nd4j.linspace(1, len, len).reshape(cols, rows);
return new Pair<>(arr.permute(1, 0), "getPermutedWithShape(" + rows + "," + cols + "," + seed + ")");
}
public static Pair getPermutedWithShape(int rows, int cols, int seed) {
return getPermutedWithShape(Nd4j.order(), rows, cols, seed);
}
public static Pair getReshapedWithShape(char ordering, int rows, int cols, int seed) {
Nd4j.getRandom().setSeed(seed);
int[] origShape = new int[3];
if (rows % 2 == 0) {
origShape[0] = rows / 2;
origShape[1] = cols;
origShape[2] = 2;
} else if (cols % 2 == 0) {
origShape[0] = rows;
origShape[1] = cols / 2;
origShape[2] = 2;
} else {
origShape[0] = 1;
origShape[1] = rows;
origShape[2] = cols;
}
int len = ArrayUtil.prod(origShape);
INDArray orig = Nd4j.linspace(1, len, len).reshape(ordering, origShape);
return new Pair<>(orig.reshape(ordering, rows, cols),
"getReshapedWithShape(" + rows + "," + cols + "," + seed + ")");
}
public static Pair getReshapedWithShape(int rows, int cols, int seed) {
return getReshapedWithShape(Nd4j.order(), rows, cols, seed);
}
public static List> getAll3dTestArraysWithShape(int seed, int... shape) {
if (shape.length != 3)
throw new IllegalArgumentException("Shape is not length 3");
List> list = new ArrayList<>();
String baseMsg = "getAll3dTestArraysWithShape(" + seed + "," + Arrays.toString(shape) + ").get(";
int len = ArrayUtil.prod(shape);
//Basic 3d in C and F orders:
Nd4j.getRandom().setSeed(seed);
INDArray stdC = Nd4j.linspace(1, len, len).reshape('c', shape);
INDArray stdF = Nd4j.linspace(1, len, len).reshape('f', shape);
list.add(new Pair<>(stdC, baseMsg + "0)/Nd4j.linspace(1,len,len)(" + Arrays.toString(shape) + ",'c')"));
list.add(new Pair<>(stdF, baseMsg + "1)/Nd4j.linspace(1,len,len(" + Arrays.toString(shape) + ",'f')"));
//Various sub arrays:
list.addAll(get3dSubArraysWithShape(seed, shape));
//TAD
list.addAll(get3dTensorAlongDimensionWithShape(seed, shape));
//Permuted
list.addAll(get3dPermutedWithShape(seed, shape));
//Reshaped
list.addAll(get3dReshapedWithShape(seed, shape));
return list;
}
public static List> get3dSubArraysWithShape(int seed, int... shape) {
List> list = new ArrayList<>();
String baseMsg = "get3dSubArraysWithShape(" + seed + "," + Arrays.toString(shape) + ")";
//Create and return various sub arrays:
Nd4j.getRandom().setSeed(seed);
int[] newShape1 = Arrays.copyOf(shape, shape.length);
newShape1[0] += 5;
int len = ArrayUtil.prod(newShape1);
INDArray temp1 = Nd4j.linspace(1, len, len).reshape(newShape1);
INDArray subset1 = temp1.get(NDArrayIndex.interval(2, shape[0] + 2), NDArrayIndex.all(), NDArrayIndex.all());
list.add(new Pair<>(subset1, baseMsg + ".get(0)"));
int[] newShape2 = Arrays.copyOf(shape, shape.length);
newShape2[1] += 5;
int len2 = ArrayUtil.prod(newShape2);
INDArray temp2 = Nd4j.linspace(1, len2, len2).reshape(newShape2);
INDArray subset2 = temp2.get(NDArrayIndex.all(), NDArrayIndex.interval(3, shape[1] + 3), NDArrayIndex.all());
list.add(new Pair<>(subset2, baseMsg + ".get(1)"));
int[] newShape3 = Arrays.copyOf(shape, shape.length);
newShape3[2] += 5;
int len3 = ArrayUtil.prod(newShape3);
INDArray temp3 = Nd4j.linspace(1, len3, len3).reshape(newShape3);
INDArray subset3 = temp3.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(4, shape[2] + 4));
list.add(new Pair<>(subset3, baseMsg + ".get(2)"));
int[] newShape4 = Arrays.copyOf(shape, shape.length);
newShape4[0] += 5;
newShape4[1] += 5;
newShape4[2] += 5;
int len4 = ArrayUtil.prod(newShape4);
INDArray temp4 = Nd4j.linspace(1, len4, len4).reshape(newShape4);
INDArray subset4 = temp4.get(NDArrayIndex.interval(4, shape[0] + 4), NDArrayIndex.interval(3, shape[1] + 3),
NDArrayIndex.interval(2, shape[2] + 2));
list.add(new Pair<>(subset4, baseMsg + ".get(3)"));
return list;
}
public static List> get3dTensorAlongDimensionWithShape(int seed, int... shape) {
List> list = new ArrayList<>();
String baseMsg = "get3dTensorAlongDimensionWithShape(" + seed + "," + Arrays.toString(shape) + ")";
//Create some 4d arrays and get subsets using 3d TAD on them
//This is not an exhaustive list of possible 3d arrays from 4d via TAD
Nd4j.getRandom().setSeed(seed);
// int[] shape4d1 = {shape[2],shape[1],shape[0],3};
int[] shape4d1 = {shape[0], shape[1], shape[2], 3};
int lenshape4d1 = ArrayUtil.prod(shape4d1);
INDArray orig1a = Nd4j.linspace(1, lenshape4d1, lenshape4d1).reshape(shape4d1);
INDArray tad1a = orig1a.javaTensorAlongDimension(0, 0, 1, 2);
INDArray orig1b = Nd4j.linspace(1, lenshape4d1, lenshape4d1).reshape(shape4d1);
INDArray tad1b = orig1b.javaTensorAlongDimension(1, 0, 1, 2);
list.add(new Pair<>(tad1a, baseMsg + ".get(0)"));
list.add(new Pair<>(tad1b, baseMsg + ".get(1)"));
int[] shape4d2 = {3, shape[0], shape[1], shape[2]};
int lenshape4d2 = ArrayUtil.prod(shape4d2);
INDArray orig2 = Nd4j.linspace(1, lenshape4d2, lenshape4d2).reshape(shape4d2);
INDArray tad2 = orig2.javaTensorAlongDimension(1, 1, 2, 3);
list.add(new Pair<>(tad2, baseMsg + ".get(2)"));
int[] shape4d3 = {shape[0], shape[1], 3, shape[2]};
int lenshape4d3 = ArrayUtil.prod(shape4d3);
INDArray orig3 = Nd4j.linspace(1, lenshape4d3, lenshape4d3).reshape(shape4d3);
INDArray tad3 = orig3.javaTensorAlongDimension(1, 1, 3, 0);
list.add(new Pair<>(tad3, baseMsg + ".get(3)"));
int[] shape4d4 = {shape[0], 3, shape[1], shape[2]};
int lenshape4d4 = ArrayUtil.prod(shape4d4);
INDArray orig4 = Nd4j.linspace(1, lenshape4d4, lenshape4d4).reshape(shape4d4);
INDArray tad4 = orig4.javaTensorAlongDimension(1, 2, 0, 3);
list.add(new Pair<>(tad4, baseMsg + ".get(4)"));
return list;
}
public static List> get3dPermutedWithShape(int seed, int... shape) {
Nd4j.getRandom().setSeed(seed);
int[] createdShape = {shape[1], shape[2], shape[0]};
int lencreatedShape = ArrayUtil.prod(createdShape);
INDArray arr = Nd4j.linspace(1, lencreatedShape, lencreatedShape).reshape(createdShape);
INDArray permuted = arr.permute(2, 0, 1);
return Collections.singletonList(new Pair<>(permuted,
"get3dPermutedWithShape(" + seed + "," + Arrays.toString(shape) + ").get(0)"));
}
public static List> get3dReshapedWithShape(int seed, int... shape) {
Nd4j.getRandom().setSeed(seed);
int[] shape2d = {shape[0] * shape[2], shape[1]};
int lenshape2d = ArrayUtil.prod(shape2d);
INDArray array2d = Nd4j.linspace(1, lenshape2d, lenshape2d).reshape(shape2d);
INDArray array3d = array2d.reshape(shape);
return Collections.singletonList(new Pair<>(array3d,
"get3dReshapedWithShape(" + seed + "," + Arrays.toString(shape) + ").get(0)"));
}
public static List> getAll4dTestArraysWithShape(int seed, int... shape) {
if (shape.length != 4)
throw new IllegalArgumentException("Shape is not length 4");
List> list = new ArrayList<>();
String baseMsg = "getAll4dTestArraysWithShape(" + seed + "," + Arrays.toString(shape) + ").get(";
//Basic 4d in C and F orders:
Nd4j.getRandom().setSeed(seed);
int len = ArrayUtil.prod(shape);
INDArray stdC = Nd4j.linspace(1, len, len).reshape('c', shape);
INDArray stdF = Nd4j.linspace(1, len, len).reshape('f', shape);
list.add(new Pair<>(stdC, baseMsg + "0)/Nd4j.rand(" + Arrays.toString(shape) + ",'c')"));
list.add(new Pair<>(stdF, baseMsg + "1)/Nd4j.rand(" + Arrays.toString(shape) + ",'f')"));
//Various sub arrays:
list.addAll(get4dSubArraysWithShape(seed, shape));
//TAD
list.addAll(get4dTensorAlongDimensionWithShape(seed, shape));
//Permuted
list.addAll(get4dPermutedWithShape(seed, shape));
//Reshaped
list.addAll(get4dReshapedWithShape(seed, shape));
return list;
}
public static List> get4dSubArraysWithShape(int seed, int... shape) {
List> list = new ArrayList<>();
String baseMsg = "get4dSubArraysWithShape(" + seed + "," + Arrays.toString(shape) + ")";
//Create and return various sub arrays:
Nd4j.getRandom().setSeed(seed);
int[] newShape1 = Arrays.copyOf(shape, shape.length);
newShape1[0] += 5;
int len = ArrayUtil.prod(newShape1);
INDArray temp1 = Nd4j.linspace(1, len, len).reshape(newShape1);
INDArray subset1 = temp1.get(NDArrayIndex.interval(2, shape[0] + 2), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.all());
list.add(new Pair<>(subset1, baseMsg + ".get(0)"));
int[] newShape2 = Arrays.copyOf(shape, shape.length);
newShape2[1] += 5;
int len2 = ArrayUtil.prod(newShape2);
INDArray temp2 = Nd4j.linspace(1, len2, len2).reshape(newShape2);
INDArray subset2 = temp2.get(NDArrayIndex.all(), NDArrayIndex.interval(3, shape[1] + 3), NDArrayIndex.all(),
NDArrayIndex.all());
list.add(new Pair<>(subset2, baseMsg + ".get(1)"));
int[] newShape3 = Arrays.copyOf(shape, shape.length);
newShape3[2] += 5;
int len3 = ArrayUtil.prod(newShape3);
INDArray temp3 = Nd4j.linspace(1, len3, len3).reshape(newShape3);
INDArray subset3 = temp3.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(4, shape[2] + 4),
NDArrayIndex.all());
list.add(new Pair<>(subset3, baseMsg + ".get(2)"));
int[] newShape4 = Arrays.copyOf(shape, shape.length);
newShape4[3] += 5;
int len4 = ArrayUtil.prod(newShape4);
INDArray temp4 = Nd4j.linspace(1, len4, len4).reshape(newShape4);
INDArray subset4 = temp4.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.interval(3, shape[3] + 3));
list.add(new Pair<>(subset4, baseMsg + ".get(3)"));
int[] newShape5 = Arrays.copyOf(shape, shape.length);
newShape5[0] += 5;
newShape5[1] += 5;
newShape5[2] += 5;
newShape5[3] += 5;
int len5 = ArrayUtil.prod(newShape5);
INDArray temp5 = Nd4j.linspace(1, len5, len5).reshape(newShape5);
INDArray subset5 = temp5.get(NDArrayIndex.interval(4, shape[0] + 4), NDArrayIndex.interval(3, shape[1] + 3),
NDArrayIndex.interval(2, shape[2] + 2), NDArrayIndex.interval(1, shape[3] + 1));
list.add(new Pair<>(subset5, baseMsg + ".get(4)"));
return list;
}
public static List> get4dTensorAlongDimensionWithShape(int seed, int... shape) {
List> list = new ArrayList<>();
String baseMsg = "get4dTensorAlongDimensionWithShape(" + seed + "," + Arrays.toString(shape) + ")";
//Create some 5d arrays and get subsets using 4d TAD on them
//This is not an exhausive list of possible 4d arrays from 5d via TAD
Nd4j.getRandom().setSeed(seed);
int[] shape4d1 = {3, shape[0], shape[1], shape[2], shape[3]};
int len = ArrayUtil.prod(shape4d1);
INDArray orig1a = Nd4j.linspace(1, len, len).reshape(shape4d1);
INDArray tad1a = orig1a.javaTensorAlongDimension(0, 1, 2, 3, 4);
INDArray orig1b = Nd4j.linspace(1, len, len).reshape(shape4d1);
INDArray tad1b = orig1b.javaTensorAlongDimension(2, 1, 2, 3, 4);
list.add(new Pair<>(tad1a, baseMsg + ".get(0)"));
list.add(new Pair<>(tad1b, baseMsg + ".get(1)"));
int[] shape4d2 = {3, shape[0], shape[1], shape[2], shape[3]};
int len2 = ArrayUtil.prod(shape4d2);
INDArray orig2 = Nd4j.linspace(1, len2, len2).reshape(shape4d2);
INDArray tad2 = orig2.javaTensorAlongDimension(1, 3, 4, 2, 1);
list.add(new Pair<>(tad2, baseMsg + ".get(2)"));
int[] shape4d3 = {shape[0], shape[1], 3, shape[2], shape[3]};
int len3 = ArrayUtil.prod(shape4d3);
INDArray orig3 = Nd4j.linspace(1, len3, len3).reshape(shape4d3);
INDArray tad3 = orig3.javaTensorAlongDimension(1, 4, 1, 3, 0);
list.add(new Pair<>(tad3, baseMsg + ".get(3)"));
int[] shape4d4 = {shape[0], shape[1], shape[2], shape[3], 3};
int len4 = ArrayUtil.prod(shape4d4);
INDArray orig4 = Nd4j.linspace(1, len4, len4).reshape(shape4d4);
INDArray tad4 = orig4.javaTensorAlongDimension(1, 2, 0, 3, 1);
list.add(new Pair<>(tad4, baseMsg + ".get(4)"));
return list;
}
public static List> get4dPermutedWithShape(int seed, int... shape) {
Nd4j.getRandom().setSeed(seed);
int[] createdShape = {shape[1], shape[3], shape[2], shape[0]};
INDArray arr = Nd4j.rand(createdShape);
INDArray permuted = arr.permute(3, 0, 2, 1);
return Collections.singletonList(new Pair<>(permuted,
"get4dPermutedWithShape(" + seed + "," + Arrays.toString(shape) + ").get(0)"));
}
public static List> get4dReshapedWithShape(int seed, int... shape) {
Nd4j.getRandom().setSeed(seed);
int[] shape2d = {shape[0] * shape[2], shape[1] * shape[3]};
INDArray array2d = Nd4j.rand(shape2d);
INDArray array3d = array2d.reshape(shape);
return Collections.singletonList(new Pair<>(array3d,
"get4dReshapedWithShape(" + seed + "," + Arrays.toString(shape) + ").get(0)"));
}
public static List> getAll5dTestArraysWithShape(int seed, int... shape) {
if (shape.length != 5)
throw new IllegalArgumentException("Shape is not length 5");
List> list = new ArrayList<>();
String baseMsg = "getAll5dTestArraysWithShape(" + seed + "," + Arrays.toString(shape) + ").get(";
//Basic 5d in C and F orders:
Nd4j.getRandom().setSeed(seed);
INDArray stdC = Nd4j.rand(shape, 'c');
INDArray stdF = Nd4j.rand(shape, 'f');
list.add(new Pair<>(stdC, baseMsg + "0)/Nd4j.rand(" + Arrays.toString(shape) + ",'c')"));
list.add(new Pair<>(stdF, baseMsg + "1)/Nd4j.rand(" + Arrays.toString(shape) + ",'f')"));
//Various sub arrays:
list.addAll(get5dSubArraysWithShape(seed, shape));
//TAD
list.addAll(get5dTensorAlongDimensionWithShape(seed, shape));
//Permuted
list.addAll(get5dPermutedWithShape(seed, shape));
//Reshaped
list.addAll(get5dReshapedWithShape(seed, shape));
return list;
}
public static List> get5dSubArraysWithShape(int seed, int... shape) {
List> list = new ArrayList<>();
String baseMsg = "get5dSubArraysWithShape(" + seed + "," + Arrays.toString(shape) + ")";
//Create and return various sub arrays:
Nd4j.getRandom().setSeed(seed);
int[] newShape1 = Arrays.copyOf(shape, shape.length);
newShape1[0] += 5;
INDArray temp1 = Nd4j.rand(newShape1);
INDArray subset1 = temp1.get(NDArrayIndex.interval(2, shape[0] + 2), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.all(), NDArrayIndex.all());
list.add(new Pair<>(subset1, baseMsg + ".get(0)"));
int[] newShape2 = Arrays.copyOf(shape, shape.length);
newShape2[1] += 5;
INDArray temp2 = Nd4j.rand(newShape2);
INDArray subset2 = temp2.get(NDArrayIndex.all(), NDArrayIndex.interval(3, shape[1] + 3), NDArrayIndex.all(),
NDArrayIndex.all(), NDArrayIndex.all());
list.add(new Pair<>(subset2, baseMsg + ".get(1)"));
int[] newShape3 = Arrays.copyOf(shape, shape.length);
newShape3[2] += 5;
INDArray temp3 = Nd4j.rand(newShape3);
INDArray subset3 = temp3.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(4, shape[2] + 4),
NDArrayIndex.all(), NDArrayIndex.all());
list.add(new Pair<>(subset3, baseMsg + ".get(2)"));
int[] newShape4 = Arrays.copyOf(shape, shape.length);
newShape4[3] += 5;
INDArray temp4 = Nd4j.rand(newShape4);
INDArray subset4 = temp4.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.interval(3, shape[3] + 3), NDArrayIndex.all());
list.add(new Pair<>(subset4, baseMsg + ".get(3)"));
int[] newShape5 = Arrays.copyOf(shape, shape.length);
newShape5[4] += 5;
INDArray temp5 = Nd4j.rand(newShape5);
INDArray subset5 = temp5.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.interval(3, shape[4] + 3));
list.add(new Pair<>(subset5, baseMsg + ".get(4)"));
int[] newShape6 = Arrays.copyOf(shape, shape.length);
newShape6[0] += 5;
newShape6[1] += 5;
newShape6[2] += 5;
newShape6[3] += 5;
newShape6[4] += 5;
INDArray temp6 = Nd4j.rand(newShape6);
INDArray subset6 = temp6.get(NDArrayIndex.interval(4, shape[0] + 4), NDArrayIndex.interval(3, shape[1] + 3),
NDArrayIndex.interval(2, shape[2] + 2), NDArrayIndex.interval(1, shape[3] + 1),
NDArrayIndex.interval(2, shape[4] + 2));
list.add(new Pair<>(subset6, baseMsg + ".get(5)"));
return list;
}
public static List> get5dTensorAlongDimensionWithShape(int seed, int... shape) {
List> list = new ArrayList<>();
String baseMsg = "get5dTensorAlongDimensionWithShape(" + seed + "," + Arrays.toString(shape) + ")";
//Create some 6d arrays and get subsets using 5d TAD on them
//This is not an exhausive list of possible 5d arrays from 6d via TAD
Nd4j.getRandom().setSeed(seed);
int[] shape4d1 = {3, shape[0], shape[1], shape[2], shape[3], shape[4]};
INDArray orig1a = Nd4j.rand(shape4d1);
INDArray tad1a = orig1a.javaTensorAlongDimension(0, 1, 2, 3, 4, 5);
INDArray orig1b = Nd4j.rand(shape4d1);
INDArray tad1b = orig1b.javaTensorAlongDimension(2, 1, 2, 3, 4, 5);
list.add(new Pair<>(tad1a, baseMsg + ".get(0)"));
list.add(new Pair<>(tad1b, baseMsg + ".get(1)"));
int[] shape4d2 = {3, shape[0], shape[1], shape[2], shape[3], shape[4]};
INDArray orig2 = Nd4j.rand(shape4d2);
INDArray tad2 = orig2.javaTensorAlongDimension(1, 3, 5, 4, 2, 1);
list.add(new Pair<>(tad2, baseMsg + ".get(2)"));
int[] shape4d3 = {shape[0], shape[1], shape[2], shape[3], shape[4], 2};
INDArray orig3 = Nd4j.rand(shape4d3);
INDArray tad3 = orig3.javaTensorAlongDimension(1, 4, 1, 3, 2, 0);
list.add(new Pair<>(tad3, baseMsg + ".get(3)"));
int[] shape4d4 = {shape[0], shape[1], shape[2], shape[3], 3, shape[4]};
INDArray orig4 = Nd4j.rand(shape4d4);
INDArray tad4 = orig4.javaTensorAlongDimension(1, 5, 2, 0, 3, 1);
list.add(new Pair<>(tad4, baseMsg + ".get(4)"));
return list;
}
public static List> get5dPermutedWithShape(int seed, int... shape) {
Nd4j.getRandom().setSeed(seed);
int[] createdShape = {shape[1], shape[4], shape[3], shape[2], shape[0]};
INDArray arr = Nd4j.rand(createdShape);
INDArray permuted = arr.permute(4, 0, 3, 2, 1);
return Collections.singletonList(new Pair<>(permuted,
"get5dPermutedWithShape(" + seed + "," + Arrays.toString(shape) + ").get(0)"));
}
public static List> get5dReshapedWithShape(int seed, int... shape) {
Nd4j.getRandom().setSeed(seed);
int[] shape2d = {shape[0] * shape[2], shape[4], shape[1] * shape[3]};
INDArray array3d = Nd4j.rand(shape2d);
INDArray array5d = array3d.reshape(shape);
return Collections.singletonList(new Pair<>(array5d,
"get5dReshapedWithShape(" + seed + "," + Arrays.toString(shape) + ").get(0)"));
}
public static List> getAll6dTestArraysWithShape(int seed, int... shape) {
if (shape.length != 6)
throw new IllegalArgumentException("Shape is not length 6");
List> list = new ArrayList<>();
String baseMsg = "getAll6dTestArraysWithShape(" + seed + "," + Arrays.toString(shape) + ").get(";
//Basic 5d in C and F orders:
Nd4j.getRandom().setSeed(seed);
INDArray stdC = Nd4j.rand(shape, 'c');
INDArray stdF = Nd4j.rand(shape, 'f');
list.add(new Pair<>(stdC, baseMsg + "0)/Nd4j.rand(" + Arrays.toString(shape) + ",'c')"));
list.add(new Pair<>(stdF, baseMsg + "1)/Nd4j.rand(" + Arrays.toString(shape) + ",'f')"));
//Various sub arrays:
list.addAll(get6dSubArraysWithShape(seed, shape));
//Permuted
list.addAll(get6dPermutedWithShape(seed, shape));
//Reshaped
list.addAll(get6dReshapedWithShape(seed, shape));
return list;
}
public static List> get6dSubArraysWithShape(int seed, int... shape) {
List> list = new ArrayList<>();
String baseMsg = "get6dSubArraysWithShape(" + seed + "," + Arrays.toString(shape) + ")";
//Create and return various sub arrays:
Nd4j.getRandom().setSeed(seed);
int[] newShape1 = Arrays.copyOf(shape, shape.length);
newShape1[0] += 5;
INDArray temp1 = Nd4j.rand(newShape1);
INDArray subset1 = temp1.get(NDArrayIndex.interval(2, shape[0] + 2), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all());
list.add(new Pair<>(subset1, baseMsg + ".get(0)"));
int[] newShape2 = Arrays.copyOf(shape, shape.length);
newShape2[1] += 5;
INDArray temp2 = Nd4j.rand(newShape2);
INDArray subset2 = temp2.get(NDArrayIndex.all(), NDArrayIndex.interval(3, shape[1] + 3), NDArrayIndex.all(),
NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all());
list.add(new Pair<>(subset2, baseMsg + ".get(1)"));
int[] newShape3 = Arrays.copyOf(shape, shape.length);
newShape3[2] += 5;
INDArray temp3 = Nd4j.rand(newShape3);
INDArray subset3 = temp3.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(4, shape[2] + 4),
NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all());
list.add(new Pair<>(subset3, baseMsg + ".get(2)"));
int[] newShape4 = Arrays.copyOf(shape, shape.length);
newShape4[3] += 5;
INDArray temp4 = Nd4j.rand(newShape4);
INDArray subset4 = temp4.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.interval(3, shape[3] + 3), NDArrayIndex.all(), NDArrayIndex.all());
list.add(new Pair<>(subset4, baseMsg + ".get(3)"));
int[] newShape5 = Arrays.copyOf(shape, shape.length);
newShape5[4] += 5;
INDArray temp5 = Nd4j.rand(newShape5);
INDArray subset5 = temp5.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.interval(3, shape[4] + 3), NDArrayIndex.all());
list.add(new Pair<>(subset5, baseMsg + ".get(4)"));
int[] newShape6 = Arrays.copyOf(shape, shape.length);
newShape6[5] += 5;
INDArray temp6 = Nd4j.rand(newShape6);
INDArray subset6 = temp6.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.all(), NDArrayIndex.interval(1, shape[5] + 1));
list.add(new Pair<>(subset6, baseMsg + ".get(5)"));
int[] newShape7 = Arrays.copyOf(shape, shape.length);
newShape7[0] += 5;
newShape7[1] += 5;
newShape7[2] += 5;
newShape7[3] += 5;
newShape7[4] += 5;
newShape7[5] += 5;
INDArray temp7 = Nd4j.rand(newShape7);
INDArray subset7 = temp7.get(NDArrayIndex.interval(4, shape[0] + 4), NDArrayIndex.interval(3, shape[1] + 3),
NDArrayIndex.interval(2, shape[2] + 2), NDArrayIndex.interval(1, shape[3] + 1),
NDArrayIndex.interval(2, shape[4] + 2), NDArrayIndex.interval(3, shape[5] + 3));
list.add(new Pair<>(subset7, baseMsg + ".get(6)"));
return list;
}
public static List> get6dPermutedWithShape(int seed, int... shape) {
Nd4j.getRandom().setSeed(seed);
int[] createdShape = {shape[1], shape[4], shape[5], shape[3], shape[2], shape[0]};
INDArray arr = Nd4j.rand(createdShape);
INDArray permuted = arr.permute(5, 0, 4, 3, 1, 2);
return Collections.singletonList(new Pair<>(permuted,
"get6dPermutedWithShape(" + seed + "," + Arrays.toString(shape) + ").get(0)"));
}
public static List> get6dReshapedWithShape(int seed, int... shape) {
Nd4j.getRandom().setSeed(seed);
int[] shape3d = {shape[0] * shape[2], shape[4] * shape[5], shape[1] * shape[3]};
INDArray array3d = Nd4j.rand(shape3d);
INDArray array6d = array3d.reshape(shape);
return Collections.singletonList(new Pair<>(array6d,
"get6dReshapedWithShape(" + seed + "," + Arrays.toString(shape) + ").get(0)"));
}
/**
* Create an ndarray
* of
* @param seed
* @param rank
* @param numShapes
* @return
*/
public static int[][] getRandomBroadCastShape(long seed, int rank, int numShapes) {
Nd4j.getRandom().setSeed(seed);
INDArray coinFlip = Nd4j.getDistributions().createBinomial(1, 0.5).sample(new int[] {numShapes, rank});
int[][] ret = new int[coinFlip.rows()][coinFlip.columns()];
for (int i = 0; i < coinFlip.rows(); i++) {
for (int j = 0; j < coinFlip.columns(); j++) {
int set = coinFlip.getInt(i, j);
if (set > 0)
ret[i][j] = set;
else {
//anything from 0 to 9
ret[i][j] = Nd4j.getRandom().nextInt(9) + 1;
}
}
}
return ret;
}
/**
* Generate a random shape to
* broadcast to
* given a randomly generated
* shape with 1s in it as inputs
* @param inputShapeWithOnes
* @param seed
* @return
*/
public static int[] broadcastToShape(int[] inputShapeWithOnes, long seed) {
Nd4j.getRandom().setSeed(seed);
int[] shape = new int[inputShapeWithOnes.length];
for (int i = 0; i < shape.length; i++) {
if (inputShapeWithOnes[i] == 1) {
shape[i] = Nd4j.getRandom().nextInt(9) + 1;
} else
shape[i] = inputShapeWithOnes[i];
}
return shape;
}
}