Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*-
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*
*/
package org.nd4j.linalg.convolution;
import org.nd4j.linalg.api.complex.IComplexNDArray;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.layers.convolution.Col2Im;
import org.nd4j.linalg.api.ops.impl.layers.convolution.Im2col;
import org.nd4j.linalg.api.ops.impl.layers.convolution.Pooling2D;
import org.nd4j.linalg.api.ops.impl.layers.convolution.config.Conv2DConfig;
import org.nd4j.linalg.api.ops.impl.layers.convolution.config.Pooling2DConfig;
import org.nd4j.linalg.factory.Nd4j;
/**
* Convolution is the
* code for applying
* the convolution operator.
*
*
* @author Adam Gibson
*/
public class Convolution {
public enum Type {
FULL, VALID, SAME
}
/**
* Default no-arg constructor.
*/
private Convolution() {}
/**
*
* @param col
* @param stride
* @param padding
* @param height
* @param width
* @return
*/
public static INDArray col2im(INDArray col, int[] stride, int[] padding, int height, int width) {
return col2im(col, stride[0], stride[1], padding[0], padding[1], height, width);
}
/**
* Rearrange matrix
* columns into blocks
* @param col the column
* transposed image to convert
* @param sy stride y
* @param sx stride x
* @param ph padding height
* @param pw padding width
* @param h height
* @param w width
* @return
*/
public static INDArray col2im(INDArray col, int sy, int sx, int ph, int pw, int h, int w) {
if (col.rank() != 6)
throw new IllegalArgumentException("col2im input array must be rank 6");
INDArray output = Nd4j.create(new int[]{col.size(0), col.size(1), h, w});
Col2Im col2Im = Col2Im.builder()
.inputArrays(new INDArray[]{col})
.outputs(new INDArray[]{output})
.conv2DConfig(Conv2DConfig.builder()
.sy(sy)
.sx(sx)
.dw(1)
.dh(1)
.kh(h)
.kw(w)
.ph(ph)
.pw(pw)
.build())
.build();
Nd4j.getExecutioner().exec(col2Im);
return col2Im.outputArguments()[0];
}
public static INDArray col2im(INDArray col, INDArray z, int sy, int sx, int ph, int pw, int h, int w, int dh, int dw ) {
if (col.rank() != 6)
throw new IllegalArgumentException("col2im input array must be rank 6");
if (z.rank() != 4)
throw new IllegalArgumentException("col2im output array must be rank 4");
Col2Im col2Im = Col2Im.builder()
.inputArrays(new INDArray[]{col})
.outputs(new INDArray[]{z})
.conv2DConfig(Conv2DConfig.builder()
.sy(sy)
.sx(sx)
.dw(dw)
.dh(dh)
.kh(h)
.kw(w)
.ph(ph)
.pw(pw)
.build())
.build();
Nd4j.getExecutioner().exec(col2Im);
return z;
}
/**
*
* @param img
* @param kernel
* @param stride
* @param padding
* @return
*/
public static INDArray im2col(INDArray img, int[] kernel, int[] stride, int[] padding) {
Nd4j.getCompressor().autoDecompress(img);
return im2col(img, kernel[0], kernel[1], stride[0], stride[1], padding[0], padding[1], 0, false);
}
/**
* Implement column formatted images
* @param img the image to process
* @param kh the kernel height
* @param kw the kernel width
* @param sy the stride along y
* @param sx the stride along x
* @param ph the padding width
* @param pw the padding height
* @param isSameMode whether to cover the whole image or not
* @return the column formatted image
*
*/
public static INDArray im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, boolean isSameMode) {
return im2col(img, kh, kw, sy, sx, ph, pw, 1, 1, isSameMode);
}
public static INDArray im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int dh, int dw, boolean isSameMode) {
Nd4j.getCompressor().autoDecompress(img);
//Input: NCHW format
int outH = outputSize(img.size(2), kh, sy, ph, dh, isSameMode);
int outW = outputSize(img.size(3), kw, sx, pw, dw, isSameMode);
//[miniBatch,depth,kH,kW,outH,outW]
INDArray out = Nd4j.create(new int[]{img.size(0), img.size(1), kh, kw, outH, outW}, 'c');
return im2col(img, kh, kw, sy, sx, ph, pw, dh, dw, isSameMode, out);
}
public static INDArray im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, boolean isSameMode,
INDArray out) {
Im2col im2col = Im2col.builder()
.outputs(new INDArray[]{out})
.inputArrays(new INDArray[]{img})
.conv2DConfig(Conv2DConfig.builder()
.kh(kh)
.pw(pw)
.ph(ph)
.sy(sy)
.sx(sx)
.kw(kw)
.kh(kh)
.dw(1)
.dh(1)
.isSameMode(isSameMode)
.build()).build();
Nd4j.getExecutioner().exec(im2col);
return im2col.outputArguments()[0];
}
public static INDArray im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int dH, int dW, boolean isSameMode,
INDArray out) {
Im2col im2col = Im2col.builder()
.outputs(new INDArray[]{out})
.inputArrays(new INDArray[]{img})
.conv2DConfig(Conv2DConfig.builder()
.kh(kh)
.pw(pw)
.ph(ph)
.sy(sy)
.sx(sx)
.kw(kw)
.kh(kh)
.dw(dW)
.dh(dH)
.isSameMode(isSameMode)
.build()).build();
Nd4j.getExecutioner().exec(im2col);
return im2col.outputArguments()[0];
}
/**
* Pooling 2d implementation
* @param img
* @param kh
* @param kw
* @param sy
* @param sx
* @param ph
* @param pw
* @param dh
* @param dw
* @param isSameMode
* @param type
* @param extra optional argument. I.e. used in pnorm pooling.
* @param virtualHeight
* @param virtualWidth
* @param out
* @return
*/
public static INDArray pooling2D(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw,
int dh, int dw, boolean isSameMode, Pooling2D.Pooling2DType type, Pooling2D.Divisor divisor,
double extra, int virtualHeight, int virtualWidth, INDArray out) {
Pooling2D pooling = Pooling2D.builder()
.arrayInputs(new INDArray[]{img})
.arrayOutputs(new INDArray[] {out})
.config(Pooling2DConfig.builder()
.dh(dh)
.dw(dw)
.extra(extra)
.kh(kh)
.kw(kw)
.ph(ph)
.pw(pw)
.isSameMode(isSameMode)
.sx(sx)
.sy(sy)
.virtualHeight(virtualHeight)
.virtualWidth(virtualWidth)
.type(type)
.divisor(divisor)
.build())
.build();
Nd4j.getExecutioner().exec(pooling);
return out;
}
/**
* Implement column formatted images
* @param img the image to process
* @param kh the kernel height
* @param kw the kernel width
* @param sy the stride along y
* @param sx the stride along x
* @param ph the padding width
* @param pw the padding height
* @param pval the padding value (not used)
* @param isSameMode whether padding mode is 'same'
* @return the column formatted image
*
*/
public static INDArray im2col(INDArray img, int kh, int kw, int sy, int sx, int ph, int pw, int pval,
boolean isSameMode) {
INDArray output = null;
if(isSameMode) {
int oH = (int) Math.ceil(img.size(2) * 1.f / sy);
int oW = (int) Math.ceil(img.size(3) * 1.f / sx);
output = Nd4j.createUninitialized(new int[] {img.size(0), img.size(1), kh, kw, oH, oW}, 'c');
}
else {
int oH = (img.size(2) - (kh + (kh-1)*(1-1)) + 2* ph)/sy + 1;
int oW = (img.size(3) - (kw + (kw-1)*(1-1)) + 2*pw)/sx + 1;
output = Nd4j.createUninitialized(new int[] {img.size(0), img.size(1), kh, kw, oH, oW}, 'c');
}
Im2col im2col = Im2col.builder()
.inputArrays(new INDArray[]{img})
.outputs(new INDArray[]{output})
.conv2DConfig(Conv2DConfig.builder()
.kh(kh)
.pw(pw)
.ph(ph)
.sy(sy)
.sx(sx)
.kw(kw)
.kh(kh)
.dw(1)
.dh(1)
.isSameMode(isSameMode)
.build()).build();
Nd4j.getExecutioner().exec(im2col);
return im2col.outputArguments()[0];
}
/**
*
* The out size for a convolution
* @param size
* @param k
* @param s
* @param p
* @param coverAll
* @return
*/
@Deprecated
public static int outSize(int size, int k, int s, int p, int dilation, boolean coverAll) {
k = effectiveKernelSize(k, dilation);
if (coverAll)
return (size + p * 2 - k + s - 1) / s + 1;
else
return (size + p * 2 - k) / s + 1;
}
public static int outputSize(int size, int k, int s, int p, int dilation, boolean isSameMode){
k = effectiveKernelSize(k, dilation);
if(isSameMode) {
return (int) Math.ceil(size * 1.f / s);
} else {
return (size - k + 2 * p)/s + 1;
}
}
public static int effectiveKernelSize(int kernel, int dilation){
return kernel + (kernel - 1)*(dilation-1);
}
/**
* 2d convolution (aka the last 2 dimensions
*
* @param input the input to op
* @param kernel the kernel to convolve with
* @param type
* @return
*/
public static INDArray conv2d(INDArray input, INDArray kernel, Type type) {
return Nd4j.getConvolution().conv2d(input, kernel, type);
}
/**
*
* @param input
* @param kernel
* @param type
* @return
*/
public static INDArray conv2d(IComplexNDArray input, IComplexNDArray kernel, Type type) {
return Nd4j.getConvolution().conv2d(input, kernel, type);
}
/**
* ND Convolution
*
* @param input the input to op
* @param kernel the kerrnel to op with
* @param type the opType of convolution
* @param axes the axes to do the convolution along
* @return the convolution of the given input and kernel
*/
public static INDArray convn(INDArray input, INDArray kernel, Type type, int[] axes) {
return Nd4j.getConvolution().convn(input, kernel, type, axes);
}
/**
* ND Convolution
*
* @param input the input to op
* @param kernel the kernel to op with
* @param type the opType of convolution
* @param axes the axes to do the convolution along
* @return the convolution of the given input and kernel
*/
public static IComplexNDArray convn(IComplexNDArray input, IComplexNDArray kernel, Type type, int[] axes) {
return Nd4j.getConvolution().convn(input, kernel, type, axes);
}
/**
* ND Convolution
*
* @param input the input to op
* @param kernel the kernel to op with
* @param type the opType of convolution
* @return the convolution of the given input and kernel
*/
public static INDArray convn(INDArray input, INDArray kernel, Type type) {
return Nd4j.getConvolution().convn(input, kernel, type);
}
/**
* ND Convolution
*
* @param input the input to op
* @param kernel the kernel to op with
* @param type the opType of convolution
* @return the convolution of the given input and kernel
*/
public static IComplexNDArray convn(IComplexNDArray input, IComplexNDArray kernel, Type type) {
return Nd4j.getConvolution().convn(input, kernel, type);
}
}