All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.learning.AdaDeltaUpdater Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*-
 *
 *  * Copyright 2017 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 *
 */

package org.nd4j.linalg.learning;

import lombok.Data;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.linalg.learning.config.AdaDelta;
import org.nd4j.linalg.ops.transforms.Transforms;

/**
 * http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf
 * https://arxiv.org/pdf/1212.5701v1.pdf
 * 

* Ada delta updater. More robust adagrad that keeps track of a moving window * average of the gradient rather than the every decaying learning rates of adagrad * * @author Adam Gibson */ @Data public class AdaDeltaUpdater implements GradientUpdater { private final AdaDelta config; private INDArray msg; //E[g^2]_t by arxiv paper, algorithm 1 private INDArray msdx; //E[delta x^2]_t by arxiv paper, algorithm 1 public AdaDeltaUpdater(AdaDelta config) { this.config = config; } @Override public void setStateViewArray(INDArray viewArray, int[] gradientShape, char gradientOrder, boolean initialize) { if (!viewArray.isRowVector()) throw new IllegalArgumentException("Invalid input: expect row vector input"); if (initialize) viewArray.assign(0); int length = viewArray.length(); this.msg = viewArray.get(NDArrayIndex.point(0), NDArrayIndex.interval(0, length / 2)); this.msdx = viewArray.get(NDArrayIndex.point(0), NDArrayIndex.interval(length / 2, length)); //Reshape to match the expected shape of the input gradient arrays this.msg = Shape.newShapeNoCopy(this.msg, gradientShape, gradientOrder == 'f'); this.msdx = Shape.newShapeNoCopy(this.msdx, gradientShape, gradientOrder == 'f'); if (msg == null || msdx == null) throw new IllegalStateException("Could not correctly reshape gradient view arrays"); } /** * Get the updated gradient for the given gradient * and also update the state of ada delta. * * @param gradient the gradient to get the * updated gradient for * @param iteration * @return the update gradient */ @Override public void applyUpdater(INDArray gradient, int iteration, int epoch) { if (msg == null || msdx == null) throw new IllegalStateException("Updater has not been initialized with view state"); double rho = config.getRho(); double epsilon = config.getEpsilon(); //Line 4 of Algorithm 1: https://arxiv.org/pdf/1212.5701v1.pdf //E[g^2]_t = rho * E[g^2]_{t−1} + (1-rho)*g^2_t msg.muli(rho).addi(gradient.mul(gradient).muli(1 - rho)); //Calculate update: //dX = - g * RMS[delta x]_{t-1} / RMS[g]_t //Note: negative is applied in the DL4J step function: params -= update rather than params += update INDArray rmsdx_t1 = Transforms.sqrt(msdx.add(epsilon), false); INDArray rmsg_t = Transforms.sqrt(msg.add(epsilon), false); INDArray update = gradient.muli(rmsdx_t1.divi(rmsg_t)); //Accumulate gradients: E[delta x^2]_t = rho * E[delta x^2]_{t-1} + (1-rho)* (delta x_t)^2 msdx.muli(rho).addi(update.mul(update).muli(1 - rho)); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy