Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.nd4j.linalg.lossfunctions.impl.LossHinge Maven / Gradle / Ivy
package org.nd4j.linalg.lossfunctions.impl;
import lombok.EqualsAndHashCode;
import onnx.OnnxProto3;
import org.nd4j.autodiff.functions.DifferentialFunction;
import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.Op;
import org.nd4j.linalg.indexing.BooleanIndexing;
import org.nd4j.linalg.indexing.conditions.Conditions;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossUtil;
import org.nd4j.linalg.primitives.Pair;
import org.tensorflow.framework.AttrValue;
import org.tensorflow.framework.GraphDef;
import org.tensorflow.framework.NodeDef;
import java.util.List;
import java.util.Map;
/**
* Created by susaneraly on 8/15/16.
*/
@EqualsAndHashCode
public class LossHinge extends DifferentialFunction implements ILossFunction {
public INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) {
if (labels.size(1) != preOutput.size(1)) {
throw new IllegalArgumentException(
"Labels array numColumns (size(1) = " + labels.size(1) + ") does not match output layer"
+ " number of outputs (nOut = " + preOutput.size(1) + ") ");
}
/* y_hat is -1 or 1
hinge loss is max(0,1-y_hat*y)
*/
//INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()));
INDArray output = activationFn.getActivation(preOutput.dup(), true);
INDArray scoreArr = output.muli(labels); //y*yhat
scoreArr.rsubi(1.0); //1 - y*yhat
if (mask != null) {
LossUtil.applyMask(scoreArr, mask);
}
return scoreArr; // 1 - y*yhat
}
@Override
public double computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask,
boolean average) {
INDArray scoreArr = computeScoreArray(labels, preOutput, activationFn, mask);
double score = scoreArr.sumNumber().doubleValue();
if (average)
score /= scoreArr.size(0);
return score;
}
@Override
public INDArray computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
BooleanIndexing.replaceWhere(scoreArr, 0.0, Conditions.lessThan(0.0));//max(0,1-y*yhat)
return scoreArr.sum(1);
}
@Override
public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) {
if (labels.size(1) != preOutput.size(1)) {
throw new IllegalArgumentException(
"Labels array numColumns (size(1) = " + labels.size(1) + ") does not match output layer"
+ " number of outputs (nOut = " + preOutput.size(1) + ") ");
}
/*
gradient is 0 if yhaty is >= 1
else gradient is gradient of the loss function = (1-yhaty) wrt preOutput = -y*derivative_of_yhat wrt preout
*/
INDArray bitMaskRowCol = scoreArray(labels, preOutput, activationFn, mask);
/*
bit mask is 0 if 1-sigma(y*yhat) is neg
bit mask is 1 if 1-sigma(y*yhat) is +ve
*/
BooleanIndexing.replaceWhere(bitMaskRowCol, 0.0, Conditions.lessThan(0.0));
BooleanIndexing.replaceWhere(bitMaskRowCol, 1.0, Conditions.greaterThan(0.0));
INDArray dLda = labels.neg().muli(bitMaskRowCol);
if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) {
//For *most* activation functions: we don't actually need to mask dL/da in addition to masking dL/dz later
//but: some, like softmax, require both (due to dL/dz_i being a function of dL/da_j, for i != j)
//We could add a special case for softmax (activationFn instanceof ActivationSoftmax) but that would be
// error prone - though buy us a tiny bit of performance
LossUtil.applyMask(dLda, mask);
}
INDArray gradients = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation functions with parameters
if (mask != null) {
LossUtil.applyMask(gradients, mask);
}
return gradients;
}
@Override
public Pair computeGradientAndScore(INDArray labels,
INDArray preOutput, IActivation activationFn, INDArray mask, boolean average) {
//TODO: probably a more efficient way to do this...
return new Pair<>(computeScore(labels, preOutput, activationFn, mask, average),
computeGradient(labels, preOutput, activationFn, mask));
}
/**
* The opName of this function
*
* @return
*/
@Override
public String name() {
return toString();
}
@Override
public String toString() {
return "LossHinge()";
}
@Override
public SDVariable[] outputVariables() {
return new SDVariable[0];
}
@Override
public SDVariable[] outputVariables(String baseName) {
return new SDVariable[0];
}
@Override
public List doDiff(List f1) {
return null;
}
@Override
public String opName() {
return name();
}
@Override
public Op.Type opType() {
return Op.Type.CUSTOM;
}
@Override
public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map attributesForNode, GraphDef graph) {
}
@Override
public void initFromOnnx(OnnxProto3.NodeProto node, SameDiff initWith, Map attributesForNode, OnnxProto3.GraphProto graph) {
}
@Override
public String onnxName() {
return "HingeLoss";
}
@Override
public String tensorflowName() {
return "HingeLoss";
}
}