All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.nd4j.linalg.lossfunctions.impl.LossMCXENT Maven / Gradle / Ivy
package org.nd4j.linalg.lossfunctions.impl;
import lombok.EqualsAndHashCode;
import lombok.Getter;
import lombok.Setter;
import onnx.OnnxProto3;
import org.nd4j.autodiff.functions.DifferentialFunction;
import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.activations.impl.ActivationSoftmax;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.Op;
import org.nd4j.linalg.indexing.BooleanIndexing;
import org.nd4j.linalg.indexing.conditions.Conditions;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossUtil;
import org.nd4j.linalg.lossfunctions.serde.RowVectorDeserializer;
import org.nd4j.linalg.lossfunctions.serde.RowVectorSerializer;
import org.nd4j.linalg.ops.transforms.Transforms;
import org.nd4j.linalg.primitives.Pair;
import org.nd4j.shade.jackson.annotation.JsonInclude;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import org.nd4j.shade.jackson.databind.annotation.JsonDeserialize;
import org.nd4j.shade.jackson.databind.annotation.JsonSerialize;
import org.tensorflow.framework.AttrValue;
import org.tensorflow.framework.GraphDef;
import org.tensorflow.framework.NodeDef;
import java.util.List;
import java.util.Map;
/**
*
* Multi-Class Cross Entropy loss function:
* L = sum_i actual_i * log( predicted_i )
*
* @author Alex Black, Susan Eraly
* @see LossNegativeLogLikelihood
*/
@EqualsAndHashCode
@JsonInclude(JsonInclude.Include.NON_NULL)
@Getter @Setter
public class LossMCXENT extends DifferentialFunction implements ILossFunction {
private static final double DEFAULT_SOFTMAX_CLIPPING_EPSILON = 1e-10;
@JsonSerialize(using = RowVectorSerializer.class)
@JsonDeserialize(using = RowVectorDeserializer.class)
private INDArray weights;
private double softmaxClipEps;
public LossMCXENT() {
this(null);
}
/**
* Multi-Class Cross Entropy loss function where each the output is (optionally) weighted/scaled by a flags scalar value.
* Note that the weights array must be a row vector, of length equal to the labels/output dimension 1 size.
* A weight vector of 1s should give identical results to no weight vector.
*
* @param weights Weights array (row vector). May be null.
*/
public LossMCXENT(INDArray weights) {
this(DEFAULT_SOFTMAX_CLIPPING_EPSILON, weights);
}
/**
* Multi-Class Cross Entropy loss function where each the output is (optionally) weighted/scaled by a fixed scalar value.
* Note that the weights array must be a row vector, of length equal to the labels/output dimension 1 size.
* A weight vector of 1s should give identical results to no weight vector.
*
* @param weights Weights array (row vector). May be null.
*/
public LossMCXENT(@JsonProperty("softmaxClipEps") double softmaxClipEps, @JsonProperty("weights") INDArray weights) {
if (weights != null && !weights.isRowVector()) {
throw new IllegalArgumentException("Weights array must be a row vector");
}
if(softmaxClipEps < 0 || softmaxClipEps > 0.5){
throw new IllegalArgumentException("Invalid clipping epsilon: epsilon should be >= 0 (but near zero). Got: "
+ softmaxClipEps);
}
this.weights = weights;
this.softmaxClipEps = softmaxClipEps;
}
private INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) {
if (labels.size(1) != preOutput.size(1)) {
throw new IllegalArgumentException(
"Labels array numColumns (size(1) = " + labels.size(1) + ") does not match output layer"
+ " number of outputs (nOut = " + preOutput.size(1) + ") ");
}
INDArray output = activationFn.getActivation(preOutput.dup(), true);
if(activationFn instanceof ActivationSoftmax && softmaxClipEps > 0.0){
BooleanIndexing.replaceWhere(output, softmaxClipEps, Conditions.lessThan(softmaxClipEps));
BooleanIndexing.replaceWhere(output, 1.0-softmaxClipEps, Conditions.greaterThan(1.0-softmaxClipEps));
}
INDArray scoreArr = Transforms.log(output, false).muli(labels);
//Weighted loss function
if (weights != null) {
if (weights.length() != scoreArr.size(1)) {
throw new IllegalStateException("Weights vector (length " + weights.length()
+ ") does not match output.size(1)=" + preOutput.size(1));
}
scoreArr.muliRowVector(weights);
}
if (mask != null) {
LossUtil.applyMask(scoreArr, mask);
}
return scoreArr;
}
@Override
public double computeScore(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask,
boolean average) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
double score = -scoreArr.sumNumber().doubleValue();
if (average) {
score /= scoreArr.size(0);
}
return score;
}
@Override
public INDArray computeScoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) {
INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask);
return scoreArr.sum(1).muli(-1);
}
@Override
public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) {
if (labels.size(1) != preOutput.size(1)) {
throw new IllegalArgumentException(
"Labels array numColumns (size(1) = " + labels.size(1) + ") does not match output layer"
+ " number of outputs (nOut = " + preOutput.size(1) + ") ");
}
INDArray grad;
//INDArray output = Nd4j.getExecutioner().execAndReturn(Nd4j.getOpFactory().createTransform(activationFn, preOutput.dup()));
INDArray output = activationFn.getActivation(preOutput.dup(), true);
if (activationFn instanceof ActivationSoftmax) {
if (mask != null && LossUtil.isPerOutputMasking(output, mask)) {
throw new UnsupportedOperationException("Per output masking for MCXENT + softmax: not supported");
}
//Weighted loss function
if (weights != null) {
if (weights.length() != output.size(1)) {
throw new IllegalStateException("Weights vector (length " + weights.length()
+ ") does not match output.size(1)=" + output.size(1));
}
INDArray temp = labels.mulRowVector(weights);
INDArray col = temp.sum(1);
grad = output.mulColumnVector(col).sub(temp);
} else {
grad = output.subi(labels);
}
} else {
INDArray dLda = output.rdivi(labels).negi();
grad = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation function with weights
//Weighted loss function
if (weights != null) {
if (weights.length() != output.size(1)) {
throw new IllegalStateException("Weights vector (length " + weights.length()
+ ") does not match output.size(1)=" + output.size(1));
}
grad.muliRowVector(weights);
}
}
//Loss function with masking
if (mask != null) {
LossUtil.applyMask(grad, mask);
}
return grad;
}
@Override
public Pair computeGradientAndScore(INDArray labels, INDArray preOutput, IActivation activationFn,
INDArray mask, boolean average) {
//TODO: probably a more efficient way to do this...
return new Pair<>(computeScore(labels, preOutput, activationFn, mask, average),
computeGradient(labels, preOutput, activationFn, mask));
}
/**
* The opName of this function
*
* @return
*/
@Override
public String name() {
return toString();
}
@Override
public String toString() {
if (weights == null)
return "LossMCXENT()";
return "LossMCXENT(weights=" + weights + ")";
}
@Override
public SDVariable[] outputVariables() {
return new SDVariable[0];
}
@Override
public SDVariable[] outputVariables(String baseName) {
return new SDVariable[0];
}
@Override
public List doDiff(List f1) {
return null;
}
@Override
public String opName() {
return "lossmcxent";
}
@Override
public Op.Type opType() {
return Op.Type.CUSTOM;
}
@Override
public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map attributesForNode, GraphDef graph) {
}
@Override
public void initFromOnnx(OnnxProto3.NodeProto node, SameDiff initWith, Map attributesForNode, OnnxProto3.GraphProto graph) {
}
@Override
public String onnxName() {
return "SoftmaxCrossEntropyWithLogits";
}
@Override
public String tensorflowName() {
return "SoftmaxCrossEntropyWithLogits";
}
}