All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.api.rng.distribution.impl.NormalDistribution Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.nd4j.linalg.api.rng.distribution.impl;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.special.Erf;
import org.apache.commons.math3.util.FastMath;
import org.nd4j.linalg.api.iter.NdIndexIterator;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.random.impl.GaussianDistribution;
import org.nd4j.linalg.api.rng.Random;
import org.nd4j.linalg.api.rng.distribution.BaseDistribution;
import org.nd4j.linalg.factory.Nd4j;

import java.util.Iterator;

/**
 * Base distribution derived from apache commons math
 * http://commons.apache.org/proper/commons-math/
 * 

* (specifically the {@link org.apache.commons.math3.distribution.NormalDistribution} * * @author Adam Gibson */ public class NormalDistribution extends BaseDistribution { /** * Default inverse cumulative probability accuracy. * * @since 2.1 */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** * Serializable version identifier. */ private static final long serialVersionUID = 8589540077390120676L; /** * √(2 π) */ private static final double SQRT2PI = FastMath.sqrt(2 * FastMath.PI); /** * √(2) */ private static final double SQRT2 = FastMath.sqrt(2.0); /** * Standard deviation of this distribution. */ private final double standardDeviation; /** * Mean of this distribution. */ private double mean; private INDArray means; /** * Inverse cumulative probability accuracy. */ private double solverAbsoluteAccuracy; public NormalDistribution(Random rng, double standardDeviation, INDArray means) { super(rng); this.standardDeviation = standardDeviation; this.means = means; } public NormalDistribution(double standardDeviation, INDArray means) { this.standardDeviation = standardDeviation; this.means = means; } /** * Create a normal distribution with mean equal to zero and standard * deviation equal to one. */ public NormalDistribution() { this(0, 1); } /** * Create a normal distribution using the given mean and standard deviation. * * @param mean Mean for this distribution. * @param sd Standard deviation for this distribution. * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException if {@code sd <= 0}. */ public NormalDistribution(double mean, double sd) throws NotStrictlyPositiveException { this(mean, sd, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } public NormalDistribution(Random rng, double mean, double sd) throws NotStrictlyPositiveException { this(rng, mean, sd, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a normal distribution using the given mean, standard deviation and * inverse cumulative distribution accuracy. * * @param mean Mean for this distribution. * @param sd Standard deviation for this distribution. * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NotStrictlyPositiveException if {@code sd <= 0}. * @since 2.1 */ public NormalDistribution(double mean, double sd, double inverseCumAccuracy) throws NotStrictlyPositiveException { this(Nd4j.getRandom(), mean, sd, inverseCumAccuracy); } /** * Creates a normal distribution. * * @param rng Random number generator. * @param mean Mean for this distribution. * @param sd Standard deviation for this distribution. * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NotStrictlyPositiveException if {@code sd <= 0}. * @since 3.1 */ public NormalDistribution(Random rng, double mean, double sd, double inverseCumAccuracy) throws NotStrictlyPositiveException { super(rng); if (sd <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd); } this.mean = mean; standardDeviation = sd; solverAbsoluteAccuracy = inverseCumAccuracy; } public NormalDistribution(INDArray mean, double std) { this.means = mean; this.standardDeviation = std; this.random = Nd4j.getRandom(); } /** * Access the mean. * * @return the mean for this distribution. */ public double getMean() { return mean; } /** * Access the standard deviation. * * @return the standard deviation for this distribution. */ public double getStandardDeviation() { return standardDeviation; } /** * {@inheritDoc} */ public double density(double x) { if (means != null) throw new IllegalStateException("Unable to sample from more than one mean"); final double x0 = x - mean; final double x1 = x0 / standardDeviation; return FastMath.exp(-0.5 * x1 * x1) / (standardDeviation * SQRT2PI); } /** * {@inheritDoc} *

* If {@code x} is more than 40 standard deviations from the mean, 0 or 1 * is returned, as in these cases the actual value is within * {@code Double.MIN_VALUE} of 0 or 1. */ public double cumulativeProbability(double x) { if (means != null) throw new IllegalStateException("Unable to sample from more than one mean"); final double dev = x - mean; if (FastMath.abs(dev) > 40 * standardDeviation) { return dev < 0 ? 0.0d : 1.0d; } return 0.5 * (1 + Erf.erf(dev / (standardDeviation * SQRT2))); } /** * {@inheritDoc} * * @since 3.2 */ @Override public double inverseCumulativeProbability(final double p) throws OutOfRangeException { if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0, 1); } if (means != null) throw new IllegalStateException("Unable to sample from more than one mean"); return mean + standardDeviation * SQRT2 * Erf.erfInv(2 * p - 1); } /** * {@inheritDoc} * * @deprecated See {@link org.apache.commons.math3.distribution.RealDistribution#cumulativeProbability(double, double)} */ @Override @Deprecated public double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException { return probability(x0, x1); } /** * {@inheritDoc} */ @Override public double probability(double x0, double x1) throws NumberIsTooLargeException { if (x0 > x1) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1, true); } final double denom = standardDeviation * SQRT2; final double v0 = (x0 - mean) / denom; final double v1 = (x1 - mean) / denom; return 0.5 * Erf.erf(v0, v1); } /** * {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} *

* For mean parameter {@code mu}, the mean is {@code mu}. */ public double getNumericalMean() { return getMean(); } /** * {@inheritDoc} *

* For standard deviation parameter {@code s}, the variance is {@code s^2}. */ public double getNumericalVariance() { final double s = getStandardDeviation(); return s * s; } /** * {@inheritDoc} *

* The lower bound of the support is always negative infinity * no matter the parameters. * * @return lower bound of the support (always * {@code Double.NEGATIVE_INFINITY}) */ public double getSupportLowerBound() { return Double.NEGATIVE_INFINITY; } /** * {@inheritDoc} *

* The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always * {@code Double.POSITIVE_INFINITY}) */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return false; } /** * {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} *

* The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } /** * {@inheritDoc} */ @Override public double sample() { if (means != null) throw new IllegalStateException("Unable to sample from more than one mean"); return standardDeviation * random.nextGaussian() + mean; } @Override public INDArray sample(int[] shape) { final INDArray ret = Nd4j.createUninitialized(shape, Nd4j.order()); return sample(ret); } @Override public INDArray sample(INDArray ret) { if (random.getStatePointer() != null) { if (means != null) { return Nd4j.getExecutioner().exec(new GaussianDistribution( ret, means, standardDeviation), random); } else { return Nd4j.getExecutioner().exec(new GaussianDistribution( ret, mean, standardDeviation), random); } } else { Iterator idxIter = new NdIndexIterator(ret.shape()); //For consistent values irrespective of c vs. fortran ordering long len = ret.length(); if (means != null) { for (int i = 0; i < len; i++) { long[] idx = idxIter.next(); ret.putScalar(idx, standardDeviation * random.nextGaussian() + means.getDouble(idx)); } } else { for (int i = 0; i < len; i++) { ret.putScalar(idxIter.next(), standardDeviation * random.nextGaussian() + mean); } } return ret; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy