All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.api.rng.distribution.impl.TruncatedNormalDistribution Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.nd4j.linalg.api.rng.distribution.impl;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.special.Erf;
import org.apache.commons.math3.util.FastMath;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.rng.Random;
import org.nd4j.linalg.api.rng.distribution.BaseDistribution;
import org.nd4j.linalg.factory.Nd4j;

/**
 *  Truncated Normal Distribution
 *
 * @author [email protected]
 */
public class TruncatedNormalDistribution extends BaseDistribution {
    /**
     * Default inverse cumulative probability accuracy.
     *
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
    /**
     * Serializable version identifier.
     */
    private static final long serialVersionUID = 8589540077390120676L;
    /**
     * √(2 π)
     */
    private static final double SQRT2PI = FastMath.sqrt(2 * FastMath.PI);
    /**
     * √(2)
     */
    private static final double SQRT2 = FastMath.sqrt(2.0);
    /**
     * Standard deviation of this distribution.
     */
    private final double standardDeviation;
    /**
     * Mean of this distribution.
     */
    private double mean;
    private INDArray means;
    /**
     * Inverse cumulative probability accuracy.
     */
    private double solverAbsoluteAccuracy;

    public TruncatedNormalDistribution(Random rng, double standardDeviation, INDArray means) {
        super(rng);
        this.standardDeviation = standardDeviation;
        this.means = means;
    }

    public TruncatedNormalDistribution(double standardDeviation, INDArray means) {
        this.standardDeviation = standardDeviation;
        this.means = means;
    }

    /**
     * Create a normal distribution with mean equal to zero and standard
     * deviation equal to one.
     */
    public TruncatedNormalDistribution() {
        this(0, 1);
    }

    /**
     * Create a normal distribution using the given mean and standard deviation.
     *
     * @param mean Mean for this distribution.
     * @param sd   Standard deviation for this distribution.
     * @throws NotStrictlyPositiveException if {@code sd <= 0}.
     */
    public TruncatedNormalDistribution(double mean, double sd) throws NotStrictlyPositiveException {
        this(mean, sd, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    public TruncatedNormalDistribution(Random rng, double mean, double sd) throws NotStrictlyPositiveException {
        this(rng, mean, sd, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Create a normal distribution using the given mean, standard deviation and
     * inverse cumulative distribution accuracy.
     *
     * @param mean               Mean for this distribution.
     * @param sd                 Standard deviation for this distribution.
     * @param inverseCumAccuracy Inverse cumulative probability accuracy.
     * @throws NotStrictlyPositiveException if {@code sd <= 0}.
     * @since 2.1
     */
    public TruncatedNormalDistribution(double mean, double sd, double inverseCumAccuracy) throws NotStrictlyPositiveException {
        this(Nd4j.getRandom(), mean, sd, inverseCumAccuracy);
    }

    /**
     * Creates a normal distribution.
     *
     * @param rng                Random number generator.
     * @param mean               Mean for this distribution.
     * @param sd                 Standard deviation for this distribution.
     * @param inverseCumAccuracy Inverse cumulative probability accuracy.
     * @throws NotStrictlyPositiveException if {@code sd <= 0}.
     * @since 3.1
     */
    public TruncatedNormalDistribution(Random rng, double mean, double sd, double inverseCumAccuracy)
                    throws NotStrictlyPositiveException {
        super(rng);

        if (sd <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.STANDARD_DEVIATION, sd);
        }

        this.mean = mean;
        standardDeviation = sd;
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    public TruncatedNormalDistribution(INDArray mean, double std) {
        this.means = mean;
        this.standardDeviation = std;
        this.random = Nd4j.getRandom();
    }

    /**
     * Access the mean.
     *
     * @return the mean for this distribution.
     */
    public double getMean() {
        return mean;
    }

    /**
     * Access the standard deviation.
     *
     * @return the standard deviation for this distribution.
     */
    public double getStandardDeviation() {
        return standardDeviation;
    }

    /**
     * {@inheritDoc}
     */
    public double density(double x) {
        if (means != null)
            throw new IllegalStateException("Unable to sample from more than one mean");
        final double x0 = x - mean;
        final double x1 = x0 / standardDeviation;
        return FastMath.exp(-0.5 * x1 * x1) / (standardDeviation * SQRT2PI);
    }

    /**
     * {@inheritDoc}
     * 

* If {@code x} is more than 40 standard deviations from the mean, 0 or 1 * is returned, as in these cases the actual value is within * {@code Double.MIN_VALUE} of 0 or 1. */ public double cumulativeProbability(double x) { if (means != null) throw new IllegalStateException("Unable to sample from more than one mean"); final double dev = x - mean; if (FastMath.abs(dev) > 40 * standardDeviation) { return dev < 0 ? 0.0d : 1.0d; } return 0.5 * (1 + Erf.erf(dev / (standardDeviation * SQRT2))); } /** * {@inheritDoc} * * @since 3.2 */ @Override public double inverseCumulativeProbability(final double p) throws OutOfRangeException { if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0, 1); } if (means != null) throw new IllegalStateException("Unable to sample from more than one mean"); return mean + standardDeviation * SQRT2 * Erf.erfInv(2 * p - 1); } /** * {@inheritDoc} * * @deprecated See {@link org.apache.commons.math3.distribution.RealDistribution#cumulativeProbability(double, double)} */ @Override @Deprecated public double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException { return probability(x0, x1); } /** * {@inheritDoc} */ @Override public double probability(double x0, double x1) throws NumberIsTooLargeException { if (x0 > x1) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1, true); } final double denom = standardDeviation * SQRT2; final double v0 = (x0 - mean) / denom; final double v1 = (x1 - mean) / denom; return 0.5 * Erf.erf(v0, v1); } /** * {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} *

* For mean parameter {@code mu}, the mean is {@code mu}. */ public double getNumericalMean() { return getMean(); } /** * {@inheritDoc} *

* For standard deviation parameter {@code s}, the variance is {@code s^2}. */ public double getNumericalVariance() { final double s = getStandardDeviation(); return s * s; } /** * {@inheritDoc} *

* The lower bound of the support is always negative infinity * no matter the parameters. * * @return lower bound of the support (always * {@code Double.NEGATIVE_INFINITY}) */ public double getSupportLowerBound() { return Double.NEGATIVE_INFINITY; } /** * {@inheritDoc} *

* The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always * {@code Double.POSITIVE_INFINITY}) */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** * {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return false; } /** * {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} *

* The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } /** * {@inheritDoc} */ @Override public double sample() { if (means != null) throw new IllegalStateException("Unable to sample from more than one mean"); return standardDeviation * random.nextGaussian() + mean; } @Override public INDArray sample(int[] shape) { final INDArray ret = Nd4j.createUninitialized(shape, Nd4j.order()); return sample(ret); } @Override public INDArray sample(INDArray ret) { if (means != null) { return Nd4j.getExecutioner().exec(new org.nd4j.linalg.api.ops.random.impl.TruncatedNormalDistribution( ret, means, standardDeviation), random); } else { return Nd4j.getExecutioner().exec(new org.nd4j.linalg.api.ops.random.impl.TruncatedNormalDistribution( ret, mean, standardDeviation), random); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy