All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.autodiff.samediff.ops.SDBaseOps Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2019-2020 Konduit K.K.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

//================== GENERATED CODE - DO NOT MODIFY THIS FILE ==================

package org.nd4j.autodiff.samediff.ops;

import static org.nd4j.autodiff.samediff.ops.SDValidation.isSameType;

import java.lang.String;
import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.indexing.conditions.Condition;

public class SDBaseOps {
  protected SameDiff sd;

  public SDBaseOps(SameDiff sameDiff) {
    this.sd = sameDiff;
  }

  /**
   * Boolean and array reduction operation, optionally along specified dimensions
* * @param x Input variable (NDARRAY type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) (BOOL type) */ public SDVariable all(SDVariable x, int... dimensions) { Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.bool.All(sd,x, dimensions).outputVariable(); } /** * Boolean and array reduction operation, optionally along specified dimensions
* * @param name name May be null. Name for the output variable * @param x Input variable (NDARRAY type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) (BOOL type) */ public SDVariable all(String name, SDVariable x, int... dimensions) { Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.bool.All(sd,x, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Boolean or array reduction operation, optionally along specified dimensions
* * @param x Input variable (NDARRAY type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) (BOOL type) */ public SDVariable any(SDVariable x, int... dimensions) { Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.bool.Any(sd,x, dimensions).outputVariable(); } /** * Boolean or array reduction operation, optionally along specified dimensions
* * @param name name May be null. Name for the output variable * @param x Input variable (NDARRAY type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) (BOOL type) */ public SDVariable any(String name, SDVariable x, int... dimensions) { Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.bool.Any(sd,x, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Argmax array reduction operation, optionally along specified dimensions.
* Output values are the index of the maximum value of each slice along the specified dimension.
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param in Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or * of rank (input rank) if keepdims = true (NUMERIC type) */ public SDVariable argmax(SDVariable in, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("argmax", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.indexaccum.IMax(sd,in, keepDims, dimensions).outputVariable(); } /** * Argmax array reduction operation, optionally along specified dimensions.
* Output values are the index of the maximum value of each slice along the specified dimension.
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or * of rank (input rank) if keepdims = true (NUMERIC type) */ public SDVariable argmax(String name, SDVariable in, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("argmax", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.indexaccum.IMax(sd,in, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Argmax array reduction operation, optionally along specified dimensions.
* Output values are the index of the maximum value of each slice along the specified dimension.
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or * of rank (input rank) if keepdims = true (NUMERIC type) */ public SDVariable argmax(SDVariable in, int... dimensions) { SDValidation.validateNumerical("argmax", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.indexaccum.IMax(sd,in, false, dimensions).outputVariable(); } /** * Argmax array reduction operation, optionally along specified dimensions.
* Output values are the index of the maximum value of each slice along the specified dimension.
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or * of rank (input rank) if keepdims = true (NUMERIC type) */ public SDVariable argmax(String name, SDVariable in, int... dimensions) { SDValidation.validateNumerical("argmax", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.indexaccum.IMax(sd,in, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Argmin array reduction operation, optionally along specified dimensions.
* Output values are the index of the minimum value of each slice along the specified dimension.
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param in Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or of rank (input rank) if keepdims = true (NUMERIC type) */ public SDVariable argmin(SDVariable in, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("argmin", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.indexaccum.IMin(sd,in, keepDims, dimensions).outputVariable(); } /** * Argmin array reduction operation, optionally along specified dimensions.
* Output values are the index of the minimum value of each slice along the specified dimension.
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or of rank (input rank) if keepdims = true (NUMERIC type) */ public SDVariable argmin(String name, SDVariable in, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("argmin", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.indexaccum.IMin(sd,in, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Argmin array reduction operation, optionally along specified dimensions.
* Output values are the index of the minimum value of each slice along the specified dimension.
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or of rank (input rank) if keepdims = true (NUMERIC type) */ public SDVariable argmin(SDVariable in, int... dimensions) { SDValidation.validateNumerical("argmin", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.indexaccum.IMin(sd,in, false, dimensions).outputVariable(); } /** * Argmin array reduction operation, optionally along specified dimensions.
* Output values are the index of the minimum value of each slice along the specified dimension.
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or of rank (input rank) if keepdims = true (NUMERIC type) */ public SDVariable argmin(String name, SDVariable in, int... dimensions) { SDValidation.validateNumerical("argmin", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.indexaccum.IMin(sd,in, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Matrix multiply a batch of matrices. matricesA and matricesB have to be arrays of same
* length and each pair taken from these sets has to have dimensions (M, N) and (N, K),
* respectively. If transposeA is true, matrices from matricesA will have shape (N, M) instead.
* Likewise, if transposeB is true, matrices from matricesB will have shape (K, N).
*
* The result of this operation will be a batch of multiplied matrices. The
* result has the same length as both input batches and each output matrix is of shape (M, K).
* * @param inputsA First array of input matrices, all of shape (M, N) or (N, M) (NUMERIC type) * @param inputsB Second array of input matrices, all of shape (N, K) or (K, N) (NUMERIC type) * @param transposeA Whether to transpose A arrays or not * @param transposeB Whether to transpose B arrays or not */ public SDVariable[] batchMmul(SDVariable[] inputsA, SDVariable[] inputsB, boolean transposeA, boolean transposeB) { SDValidation.validateNumerical("batchMmul", "inputsA", inputsA); Preconditions.checkArgument(inputsA.length >= 1, "inputsA has incorrect size/length. Expected: inputsA.length >= 1, got %s", inputsA.length); SDValidation.validateNumerical("batchMmul", "inputsB", inputsB); Preconditions.checkArgument(inputsB.length >= 1, "inputsB has incorrect size/length. Expected: inputsB.length >= 1, got %s", inputsB.length); return new org.nd4j.linalg.api.ops.impl.reduce.custom.BatchMmul(sd,inputsA, inputsB, transposeA, transposeB).outputVariables(); } /** * Matrix multiply a batch of matrices. matricesA and matricesB have to be arrays of same
* length and each pair taken from these sets has to have dimensions (M, N) and (N, K),
* respectively. If transposeA is true, matrices from matricesA will have shape (N, M) instead.
* Likewise, if transposeB is true, matrices from matricesB will have shape (K, N).
*
* The result of this operation will be a batch of multiplied matrices. The
* result has the same length as both input batches and each output matrix is of shape (M, K).
* * @param names names May be null. Arrays of names for the output variables. * @param inputsA First array of input matrices, all of shape (M, N) or (N, M) (NUMERIC type) * @param inputsB Second array of input matrices, all of shape (N, K) or (K, N) (NUMERIC type) * @param transposeA Whether to transpose A arrays or not * @param transposeB Whether to transpose B arrays or not */ public SDVariable[] batchMmul(String[] names, SDVariable[] inputsA, SDVariable[] inputsB, boolean transposeA, boolean transposeB) { SDValidation.validateNumerical("batchMmul", "inputsA", inputsA); Preconditions.checkArgument(inputsA.length >= 1, "inputsA has incorrect size/length. Expected: inputsA.length >= 1, got %s", inputsA.length); SDValidation.validateNumerical("batchMmul", "inputsB", inputsB); Preconditions.checkArgument(inputsB.length >= 1, "inputsB has incorrect size/length. Expected: inputsB.length >= 1, got %s", inputsB.length); SDVariable[] out = new org.nd4j.linalg.api.ops.impl.reduce.custom.BatchMmul(sd,inputsA, inputsB, transposeA, transposeB).outputVariables(); return sd.updateVariableNamesAndReferences(out, names); } /** * Matrix multiply a batch of matrices. matricesA and matricesB have to be arrays of same
* length and each pair taken from these sets has to have dimensions (M, N) and (N, K),
* respectively. If transposeA is true, matrices from matricesA will have shape (N, M) instead.
* Likewise, if transposeB is true, matrices from matricesB will have shape (K, N).
*
* The result of this operation will be a batch of multiplied matrices. The
* result has the same length as both input batches and each output matrix is of shape (M, K).
* * @param inputsA First array of input matrices, all of shape (M, N) or (N, M) (NUMERIC type) * @param inputsB Second array of input matrices, all of shape (N, K) or (K, N) (NUMERIC type) */ public SDVariable[] batchMmul(SDVariable[] inputsA, SDVariable... inputsB) { SDValidation.validateNumerical("batchMmul", "inputsA", inputsA); Preconditions.checkArgument(inputsA.length >= 1, "inputsA has incorrect size/length. Expected: inputsA.length >= 1, got %s", inputsA.length); SDValidation.validateNumerical("batchMmul", "inputsB", inputsB); Preconditions.checkArgument(inputsB.length >= 1, "inputsB has incorrect size/length. Expected: inputsB.length >= 1, got %s", inputsB.length); return new org.nd4j.linalg.api.ops.impl.reduce.custom.BatchMmul(sd,inputsA, inputsB, false, false).outputVariables(); } /** * Matrix multiply a batch of matrices. matricesA and matricesB have to be arrays of same
* length and each pair taken from these sets has to have dimensions (M, N) and (N, K),
* respectively. If transposeA is true, matrices from matricesA will have shape (N, M) instead.
* Likewise, if transposeB is true, matrices from matricesB will have shape (K, N).
*
* The result of this operation will be a batch of multiplied matrices. The
* result has the same length as both input batches and each output matrix is of shape (M, K).
* * @param names names May be null. Arrays of names for the output variables. * @param inputsA First array of input matrices, all of shape (M, N) or (N, M) (NUMERIC type) * @param inputsB Second array of input matrices, all of shape (N, K) or (K, N) (NUMERIC type) */ public SDVariable[] batchMmul(String[] names, SDVariable[] inputsA, SDVariable... inputsB) { SDValidation.validateNumerical("batchMmul", "inputsA", inputsA); Preconditions.checkArgument(inputsA.length >= 1, "inputsA has incorrect size/length. Expected: inputsA.length >= 1, got %s", inputsA.length); SDValidation.validateNumerical("batchMmul", "inputsB", inputsB); Preconditions.checkArgument(inputsB.length >= 1, "inputsB has incorrect size/length. Expected: inputsB.length >= 1, got %s", inputsB.length); SDVariable[] out = new org.nd4j.linalg.api.ops.impl.reduce.custom.BatchMmul(sd,inputsA, inputsB, false, false).outputVariables(); return sd.updateVariableNamesAndReferences(out, names); } /** * Cast the array to a new datatype - for example, Integer -> Float
* * @param arg Input variable to cast (NDARRAY type) * @param datatype Datatype to cast to * @return output Output array (after casting) (NDARRAY type) */ public SDVariable castTo(SDVariable arg, DataType datatype) { return new org.nd4j.linalg.api.ops.impl.transforms.dtype.Cast(sd,arg, datatype).outputVariable(); } /** * Cast the array to a new datatype - for example, Integer -> Float
* * @param name name May be null. Name for the output variable * @param arg Input variable to cast (NDARRAY type) * @param datatype Datatype to cast to * @return output Output array (after casting) (NDARRAY type) */ public SDVariable castTo(String name, SDVariable arg, DataType datatype) { SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.dtype.Cast(sd,arg, datatype).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Concatenate a set of inputs along the specified dimension.
* Note that inputs must have identical rank and identical dimensions, other than the dimension to stack on.
* For example, if 2 inputs have shape [a, x, c] and [a, y, c] and dimension = 1, then the output has shape [a, x+y, c]
* * Inputs must satisfy the following constraints:
* Input arrays must all be the same datatype: isSameType(inputs)
* * @param inputs Input variables (NUMERIC type) * @param dimension Dimension to concatenate on * @return output (NUMERIC type) */ public SDVariable concat(int dimension, SDVariable... inputs) { SDValidation.validateNumerical("concat", "inputs", inputs); Preconditions.checkArgument(inputs.length >= 1, "inputs has incorrect size/length. Expected: inputs.length >= 1, got %s", inputs.length); Preconditions.checkArgument(isSameType(inputs), "Input arrays must all be the same datatype"); return new org.nd4j.linalg.api.ops.impl.shape.Concat(sd,inputs, dimension).outputVariable(); } /** * Concatenate a set of inputs along the specified dimension.
* Note that inputs must have identical rank and identical dimensions, other than the dimension to stack on.
* For example, if 2 inputs have shape [a, x, c] and [a, y, c] and dimension = 1, then the output has shape [a, x+y, c]
* * Inputs must satisfy the following constraints:
* Input arrays must all be the same datatype: isSameType(inputs)
* * @param name name May be null. Name for the output variable * @param dimension Dimension to concatenate on * @param inputs Input variables (NUMERIC type) * @return output (NUMERIC type) */ public SDVariable concat(String name, int dimension, SDVariable... inputs) { SDValidation.validateNumerical("concat", "inputs", inputs); Preconditions.checkArgument(inputs.length >= 1, "inputs has incorrect size/length. Expected: inputs.length >= 1, got %s", inputs.length); Preconditions.checkArgument(isSameType(inputs), "Input arrays must all be the same datatype"); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Concat(sd,inputs, dimension).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Cumulative product operation.
* For input: [ a, b, c], output is:
* exclusive=false, reverse=false: [a, a*b, a*b*c]
* exclusive=true, reverse=false, [0, a, a*b]
* exclusive=false, reverse=true: [a*b*c, b*c, c]
* exclusive=true, reverse=true: [b*c, c, 0]
* * @param in Input variable (NUMERIC type) * @param exclusive If true: exclude the first value * @param reverse If true: reverse the direction of the accumulation * @param axis Scalar axis argument for dimension to perform cumululative sum operations along (Size: AtLeast(min=1)) * @return output Output variable (NUMERIC type) */ public SDVariable cumprod(SDVariable in, boolean exclusive, boolean reverse, int... axis) { SDValidation.validateNumerical("cumprod", "in", in); Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length); return new org.nd4j.linalg.api.ops.impl.transforms.custom.CumProd(sd,in, exclusive, reverse, axis).outputVariable(); } /** * Cumulative product operation.
* For input: [ a, b, c], output is:
* exclusive=false, reverse=false: [a, a*b, a*b*c]
* exclusive=true, reverse=false, [0, a, a*b]
* exclusive=false, reverse=true: [a*b*c, b*c, c]
* exclusive=true, reverse=true: [b*c, c, 0]
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param exclusive If true: exclude the first value * @param reverse If true: reverse the direction of the accumulation * @param axis Scalar axis argument for dimension to perform cumululative sum operations along (Size: AtLeast(min=1)) * @return output Output variable (NUMERIC type) */ public SDVariable cumprod(String name, SDVariable in, boolean exclusive, boolean reverse, int... axis) { SDValidation.validateNumerical("cumprod", "in", in); Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.CumProd(sd,in, exclusive, reverse, axis).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Cumulative product operation.
* For input: [ a, b, c], output is:
* exclusive=false, reverse=false: [a, a*b, a*b*c]
* exclusive=true, reverse=false, [0, a, a*b]
* exclusive=false, reverse=true: [a*b*c, b*c, c]
* exclusive=true, reverse=true: [b*c, c, 0]
* * @param in Input variable (NUMERIC type) * @param axis Scalar axis argument for dimension to perform cumululative sum operations along (Size: AtLeast(min=1)) * @return output Output variable (NUMERIC type) */ public SDVariable cumprod(SDVariable in, int... axis) { SDValidation.validateNumerical("cumprod", "in", in); Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length); return new org.nd4j.linalg.api.ops.impl.transforms.custom.CumProd(sd,in, false, false, axis).outputVariable(); } /** * Cumulative product operation.
* For input: [ a, b, c], output is:
* exclusive=false, reverse=false: [a, a*b, a*b*c]
* exclusive=true, reverse=false, [0, a, a*b]
* exclusive=false, reverse=true: [a*b*c, b*c, c]
* exclusive=true, reverse=true: [b*c, c, 0]
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param axis Scalar axis argument for dimension to perform cumululative sum operations along (Size: AtLeast(min=1)) * @return output Output variable (NUMERIC type) */ public SDVariable cumprod(String name, SDVariable in, int... axis) { SDValidation.validateNumerical("cumprod", "in", in); Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.CumProd(sd,in, false, false, axis).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Cumulative sum operation.
* For input: [ a, b, c], output is:
* exclusive=false, reverse=false: [a, a+b, a+b+c]
* exclusive=true, reverse=false, [0, a, a+b]
* exclusive=false, reverse=true: [a+b+c, b+c, c]
* exclusive=true, reverse=true: [b+c, c, 0]
* * @param in Input variable (NUMERIC type) * @param exclusive If true: exclude the first value * @param reverse If true: reverse the direction of the accumulation * @param axis Scalar axis argument for dimension to perform cumululative sum operations along (Size: AtLeast(min=1)) * @return output (NUMERIC type) */ public SDVariable cumsum(SDVariable in, boolean exclusive, boolean reverse, int... axis) { SDValidation.validateNumerical("cumsum", "in", in); Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length); return new org.nd4j.linalg.api.ops.impl.transforms.custom.CumSum(sd,in, exclusive, reverse, axis).outputVariable(); } /** * Cumulative sum operation.
* For input: [ a, b, c], output is:
* exclusive=false, reverse=false: [a, a+b, a+b+c]
* exclusive=true, reverse=false, [0, a, a+b]
* exclusive=false, reverse=true: [a+b+c, b+c, c]
* exclusive=true, reverse=true: [b+c, c, 0]
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param exclusive If true: exclude the first value * @param reverse If true: reverse the direction of the accumulation * @param axis Scalar axis argument for dimension to perform cumululative sum operations along (Size: AtLeast(min=1)) * @return output (NUMERIC type) */ public SDVariable cumsum(String name, SDVariable in, boolean exclusive, boolean reverse, int... axis) { SDValidation.validateNumerical("cumsum", "in", in); Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.CumSum(sd,in, exclusive, reverse, axis).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Cumulative sum operation.
* For input: [ a, b, c], output is:
* exclusive=false, reverse=false: [a, a+b, a+b+c]
* exclusive=true, reverse=false, [0, a, a+b]
* exclusive=false, reverse=true: [a+b+c, b+c, c]
* exclusive=true, reverse=true: [b+c, c, 0]
* * @param in Input variable (NUMERIC type) * @param axis Scalar axis argument for dimension to perform cumululative sum operations along (Size: AtLeast(min=1)) * @return output (NUMERIC type) */ public SDVariable cumsum(SDVariable in, int... axis) { SDValidation.validateNumerical("cumsum", "in", in); Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length); return new org.nd4j.linalg.api.ops.impl.transforms.custom.CumSum(sd,in, false, false, axis).outputVariable(); } /** * Cumulative sum operation.
* For input: [ a, b, c], output is:
* exclusive=false, reverse=false: [a, a+b, a+b+c]
* exclusive=true, reverse=false, [0, a, a+b]
* exclusive=false, reverse=true: [a+b+c, b+c, c]
* exclusive=true, reverse=true: [b+c, c, 0]
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param axis Scalar axis argument for dimension to perform cumululative sum operations along (Size: AtLeast(min=1)) * @return output (NUMERIC type) */ public SDVariable cumsum(String name, SDVariable in, int... axis) { SDValidation.validateNumerical("cumsum", "in", in); Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.CumSum(sd,in, false, false, axis).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Pairwise dot product reduction along dimension
* output = sum(i=0 ... size(dim)-1) x[i] * y[i]
* * @param x first input (NUMERIC type) * @param y second input (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output output variable (NUMERIC type) */ public SDVariable dot(SDVariable x, SDVariable y, int... dimensions) { SDValidation.validateNumerical("dot", "x", x); SDValidation.validateNumerical("dot", "y", y); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce3.Dot(sd,x, y, dimensions).outputVariable(); } /** * Pairwise dot product reduction along dimension
* output = sum(i=0 ... size(dim)-1) x[i] * y[i]
* * @param name name May be null. Name for the output variable * @param x first input (NUMERIC type) * @param y second input (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output output variable (NUMERIC type) */ public SDVariable dot(String name, SDVariable x, SDVariable y, int... dimensions) { SDValidation.validateNumerical("dot", "x", x); SDValidation.validateNumerical("dot", "y", y); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce3.Dot(sd,x, y, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Dynamically partition the input variable values into the specified number of paritions, using the indices.
* Example:
*

* input = [1,2,3,4,5]
* numPartitions = 2
* partitions = [1,0,0,1,0]
* out[0] = [2,3,5]
* out[1] = [1,4] }
*

* * @param x Input variable (NUMERIC type) * @param partitions 1D input with values 0 to numPartitions-1 (INT type) * @param numPartitions Number of partitions, >= 1 */ public SDVariable[] dynamicPartition(SDVariable x, SDVariable partitions, int numPartitions) { SDValidation.validateNumerical("dynamicPartition", "x", x); SDValidation.validateInteger("dynamicPartition", "partitions", partitions); return new org.nd4j.linalg.api.ops.impl.transforms.custom.DynamicPartition(sd,x, partitions, numPartitions).outputVariables(); } /** * Dynamically partition the input variable values into the specified number of paritions, using the indices.
* Example:
*

* input = [1,2,3,4,5]
* numPartitions = 2
* partitions = [1,0,0,1,0]
* out[0] = [2,3,5]
* out[1] = [1,4] }
*

* * @param names names May be null. Arrays of names for the output variables. * @param x Input variable (NUMERIC type) * @param partitions 1D input with values 0 to numPartitions-1 (INT type) * @param numPartitions Number of partitions, >= 1 */ public SDVariable[] dynamicPartition(String[] names, SDVariable x, SDVariable partitions, int numPartitions) { SDValidation.validateNumerical("dynamicPartition", "x", x); SDValidation.validateInteger("dynamicPartition", "partitions", partitions); SDVariable[] out = new org.nd4j.linalg.api.ops.impl.transforms.custom.DynamicPartition(sd,x, partitions, numPartitions).outputVariables(); return sd.updateVariableNamesAndReferences(out, names); } /** * Dynamically merge the specified input arrays into a single array, using the specified indices
* * @param indices Indices to use when merging. Must be >= 1, same length as input variables (INT type) * @param x Input variables. (NUMERIC type) * @return output Merged output variable (NUMERIC type) */ public SDVariable dynamicStitch(SDVariable[] indices, SDVariable... x) { SDValidation.validateInteger("dynamicStitch", "indices", indices); Preconditions.checkArgument(indices.length >= 1, "indices has incorrect size/length. Expected: indices.length >= 1, got %s", indices.length); SDValidation.validateNumerical("dynamicStitch", "x", x); Preconditions.checkArgument(x.length >= 1, "x has incorrect size/length. Expected: x.length >= 1, got %s", x.length); return new org.nd4j.linalg.api.ops.impl.transforms.custom.DynamicStitch(sd,indices, x).outputVariable(); } /** * Dynamically merge the specified input arrays into a single array, using the specified indices
* * @param name name May be null. Name for the output variable * @param indices Indices to use when merging. Must be >= 1, same length as input variables (INT type) * @param x Input variables. (NUMERIC type) * @return output Merged output variable (NUMERIC type) */ public SDVariable dynamicStitch(String name, SDVariable[] indices, SDVariable... x) { SDValidation.validateInteger("dynamicStitch", "indices", indices); Preconditions.checkArgument(indices.length >= 1, "indices has incorrect size/length. Expected: indices.length >= 1, got %s", indices.length); SDValidation.validateNumerical("dynamicStitch", "x", x); Preconditions.checkArgument(x.length >= 1, "x has incorrect size/length. Expected: x.length >= 1, got %s", x.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.DynamicStitch(sd,indices, x).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Equals operation: elementwise x == y
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param x Input array (NUMERIC type) * @param y Double value argument to use in operation * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable eq(SDVariable x, double y) { SDValidation.validateNumerical("eq", "x", x); return new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarEquals(sd,x, y).outputVariable(); } /** * Equals operation: elementwise x == y
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param name name May be null. Name for the output variable * @param x Input array (NUMERIC type) * @param y Double value argument to use in operation * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable eq(String name, SDVariable x, double y) { SDValidation.validateNumerical("eq", "x", x); SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarEquals(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Equal to operation: elementwise x == y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param x Input 1 (NUMERIC type) * @param y Input 2 (NUMERIC type) * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable eq(SDVariable x, SDVariable y) { SDValidation.validateNumerical("eq", "x", x); SDValidation.validateNumerical("eq", "y", y); return new org.nd4j.linalg.api.ops.impl.transforms.custom.EqualTo(sd,x, y).outputVariable(); } /** * Equal to operation: elementwise x == y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param name name May be null. Name for the output variable * @param x Input 1 (NUMERIC type) * @param y Input 2 (NUMERIC type) * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable eq(String name, SDVariable x, SDVariable y) { SDValidation.validateNumerical("eq", "x", x); SDValidation.validateNumerical("eq", "y", y); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.EqualTo(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Reshape the input by adding a 1 at the specified location.
* For example, if input has shape [a, b], then output shape is:
* axis = 0: [1, a, b]
* axis = 1: [a, 1, b]
* axis = 2: [a, b, 1]
* * @param x Input variable (NDARRAY type) * @param axis Axis to expand * @return output Output variable (NUMERIC type) */ public SDVariable expandDims(SDVariable x, int axis) { return new org.nd4j.linalg.api.ops.impl.shape.ExpandDims(sd,x, axis).outputVariable(); } /** * Reshape the input by adding a 1 at the specified location.
* For example, if input has shape [a, b], then output shape is:
* axis = 0: [1, a, b]
* axis = 1: [a, 1, b]
* axis = 2: [a, b, 1]
* * @param name name May be null. Name for the output variable * @param x Input variable (NDARRAY type) * @param axis Axis to expand * @return output Output variable (NUMERIC type) */ public SDVariable expandDims(String name, SDVariable x, int axis) { SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.ExpandDims(sd,x, axis).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Generate an output variable with the specified (dynamic) shape with all elements set to the specified value
* * @param shape Shape: must be a 1D array/variable (INT type) * @param dataType Datatype of the output array * @param value Value to set all elements to * @return output Output variable (NUMERIC type) */ public SDVariable fill(SDVariable shape, DataType dataType, double value) { SDValidation.validateInteger("fill", "shape", shape); return new org.nd4j.linalg.api.ops.impl.transforms.custom.Fill(sd,shape, dataType, value).outputVariable(); } /** * Generate an output variable with the specified (dynamic) shape with all elements set to the specified value
* * @param name name May be null. Name for the output variable * @param shape Shape: must be a 1D array/variable (INT type) * @param dataType Datatype of the output array * @param value Value to set all elements to * @return output Output variable (NUMERIC type) */ public SDVariable fill(String name, SDVariable shape, DataType dataType, double value) { SDValidation.validateInteger("fill", "shape", shape); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.Fill(sd,shape, dataType, value).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Gather slices from the input variable where the indices are specified as fixed int[] values.
* Output shape is same as input shape, except for axis dimension, which has size equal to indices.length.
* * @param df Input variable (NUMERIC type) * @param indices Indices to get (Size: AtLeast(min=1)) * @param axis Axis that the indices refer to * @return output Output variable with slices pulled from the specified axis (NUMERIC type) */ public SDVariable gather(SDVariable df, int[] indices, int axis) { SDValidation.validateNumerical("gather", "df", df); Preconditions.checkArgument(indices.length >= 1, "indices has incorrect size/length. Expected: indices.length >= 1, got %s", indices.length); return new org.nd4j.linalg.api.ops.impl.shape.Gather(sd,df, indices, axis).outputVariable(); } /** * Gather slices from the input variable where the indices are specified as fixed int[] values.
* Output shape is same as input shape, except for axis dimension, which has size equal to indices.length.
* * @param name name May be null. Name for the output variable * @param df Input variable (NUMERIC type) * @param indices Indices to get (Size: AtLeast(min=1)) * @param axis Axis that the indices refer to * @return output Output variable with slices pulled from the specified axis (NUMERIC type) */ public SDVariable gather(String name, SDVariable df, int[] indices, int axis) { SDValidation.validateNumerical("gather", "df", df); Preconditions.checkArgument(indices.length >= 1, "indices has incorrect size/length. Expected: indices.length >= 1, got %s", indices.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Gather(sd,df, indices, axis).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Gather slices from the input variable where the indices are specified as dynamic array values.
* Output shape is same as input shape, except for axis dimension, which has size equal to indices.length.
* * @param df Input variable (NUMERIC type) * @param indices Indices to get slices for. Rank 0 or 1 input (INT type) * @param axis Axis that the indices refer to * @return output Output variable with slices pulled from the specified axis (NUMERIC type) */ public SDVariable gather(SDVariable df, SDVariable indices, int axis) { SDValidation.validateNumerical("gather", "df", df); SDValidation.validateInteger("gather", "indices", indices); return new org.nd4j.linalg.api.ops.impl.shape.Gather(sd,df, indices, axis).outputVariable(); } /** * Gather slices from the input variable where the indices are specified as dynamic array values.
* Output shape is same as input shape, except for axis dimension, which has size equal to indices.length.
* * @param name name May be null. Name for the output variable * @param df Input variable (NUMERIC type) * @param indices Indices to get slices for. Rank 0 or 1 input (INT type) * @param axis Axis that the indices refer to * @return output Output variable with slices pulled from the specified axis (NUMERIC type) */ public SDVariable gather(String name, SDVariable df, SDVariable indices, int axis) { SDValidation.validateNumerical("gather", "df", df); SDValidation.validateInteger("gather", "indices", indices); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Gather(sd,df, indices, axis).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Gather slices from df with shape specified by indices.
* * @param df (NUMERIC type) * @param indices (NUMERIC type) * @return output (NUMERIC type) */ public SDVariable gatherNd(SDVariable df, SDVariable indices) { SDValidation.validateNumerical("gatherNd", "df", df); SDValidation.validateNumerical("gatherNd", "indices", indices); return new org.nd4j.linalg.api.ops.impl.shape.GatherNd(sd,df, indices).outputVariable(); } /** * Gather slices from df with shape specified by indices.
* * @param name name May be null. Name for the output variable * @param df (NUMERIC type) * @param indices (NUMERIC type) * @return output (NUMERIC type) */ public SDVariable gatherNd(String name, SDVariable df, SDVariable indices) { SDValidation.validateNumerical("gatherNd", "df", df); SDValidation.validateNumerical("gatherNd", "indices", indices); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.GatherNd(sd,df, indices).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Greater than operation: elementwise x > y
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param x Input array (NUMERIC type) * @param y Double value argument to use in operation * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable gt(SDVariable x, double y) { SDValidation.validateNumerical("gt", "x", x); return new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarGreaterThan(sd,x, y).outputVariable(); } /** * Greater than operation: elementwise x > y
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param name name May be null. Name for the output variable * @param x Input array (NUMERIC type) * @param y Double value argument to use in operation * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable gt(String name, SDVariable x, double y) { SDValidation.validateNumerical("gt", "x", x); SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarGreaterThan(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Greater than operation: elementwise x > y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param x Input 1 (NUMERIC type) * @param y Input 2 (NUMERIC type) * @return output Output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable gt(SDVariable x, SDVariable y) { SDValidation.validateNumerical("gt", "x", x); SDValidation.validateNumerical("gt", "y", y); return new org.nd4j.linalg.api.ops.impl.transforms.custom.GreaterThan(sd,x, y).outputVariable(); } /** * Greater than operation: elementwise x > y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param name name May be null. Name for the output variable * @param x Input 1 (NUMERIC type) * @param y Input 2 (NUMERIC type) * @return output Output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable gt(String name, SDVariable x, SDVariable y) { SDValidation.validateNumerical("gt", "x", x); SDValidation.validateNumerical("gt", "y", y); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.GreaterThan(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Greater than or equals operation: elementwise x >= y
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param x Input array (NUMERIC type) * @param y Double value argument to use in operation * @return output Output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable gte(SDVariable x, double y) { SDValidation.validateNumerical("gte", "x", x); return new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarGreaterThanOrEqual(sd,x, y).outputVariable(); } /** * Greater than or equals operation: elementwise x >= y
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param name name May be null. Name for the output variable * @param x Input array (NUMERIC type) * @param y Double value argument to use in operation * @return output Output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable gte(String name, SDVariable x, double y) { SDValidation.validateNumerical("gte", "x", x); SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarGreaterThanOrEqual(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Greater than or equal to operation: elementwise x >= y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param x Input 1 (NUMERIC type) * @param y Input 2 (NUMERIC type) * @return output (NUMERIC type) */ public SDVariable gte(SDVariable x, SDVariable y) { SDValidation.validateNumerical("gte", "x", x); SDValidation.validateNumerical("gte", "y", y); return new org.nd4j.linalg.api.ops.impl.transforms.custom.GreaterThanOrEqual(sd,x, y).outputVariable(); } /** * Greater than or equal to operation: elementwise x >= y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param name name May be null. Name for the output variable * @param x Input 1 (NUMERIC type) * @param y Input 2 (NUMERIC type) * @return output (NUMERIC type) */ public SDVariable gte(String name, SDVariable x, SDVariable y) { SDValidation.validateNumerical("gte", "x", x); SDValidation.validateNumerical("gte", "y", y); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.GreaterThanOrEqual(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Elementwise identity operation: out = x
* * @param input Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public SDVariable identity(SDVariable input) { SDValidation.validateNumerical("identity", "input", input); return new org.nd4j.linalg.api.ops.impl.transforms.same.Identity(sd,input).outputVariable(); } /** * Elementwise identity operation: out = x
* * @param name name May be null. Name for the output variable * @param input Input variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public SDVariable identity(String name, SDVariable input) { SDValidation.validateNumerical("identity", "input", input); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.same.Identity(sd,input).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Compute the inverse permutation indices for a permutation operation
* Example: if input is [2, 0, 1] then output is [1, 2, 0]
* The idea is that x.permute(input).permute(invertPermutation(input)) == x
* * @param input 1D indices for permutation (INT type) * @return output 1D inverted permutation (INT type) */ public SDVariable invertPermutation(SDVariable input) { SDValidation.validateInteger("invertPermutation", "input", input); return new org.nd4j.linalg.api.ops.impl.transforms.custom.InvertPermutation(sd,input).outputVariable(); } /** * Compute the inverse permutation indices for a permutation operation
* Example: if input is [2, 0, 1] then output is [1, 2, 0]
* The idea is that x.permute(input).permute(invertPermutation(input)) == x
* * @param name name May be null. Name for the output variable * @param input 1D indices for permutation (INT type) * @return output 1D inverted permutation (INT type) */ public SDVariable invertPermutation(String name, SDVariable input) { SDValidation.validateInteger("invertPermutation", "input", input); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.InvertPermutation(sd,input).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Is the director a numeric tensor? In the current version of ND4J/SameDiff, this always returns true/1
* * @param x Input variable (NUMERIC type) * @return output scalar boolean with value true or false (NDARRAY type) */ public SDVariable isNumericTensor(SDVariable x) { SDValidation.validateNumerical("isNumericTensor", "x", x); return new org.nd4j.linalg.api.ops.impl.transforms.custom.IsNumericTensor(sd,x).outputVariable(); } /** * Is the director a numeric tensor? In the current version of ND4J/SameDiff, this always returns true/1
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @return output scalar boolean with value true or false (NDARRAY type) */ public SDVariable isNumericTensor(String name, SDVariable x) { SDValidation.validateNumerical("isNumericTensor", "x", x); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.IsNumericTensor(sd,x).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Create a new 1d array with values evenly spaced between values 'start' and 'stop'
* For example, linspace(start=3.0, stop=4.0, number=3) will generate [3.0, 3.5, 4.0]
* * @param dataType Data type of the output array * @param start Start value * @param stop Stop value * @param number Number of values to generate * @return output INDArray with linearly spaced elements (NUMERIC type) */ public SDVariable linspace(DataType dataType, double start, double stop, long number) { return new org.nd4j.linalg.api.ops.impl.shape.Linspace(sd,dataType, start, stop, number).outputVariable(); } /** * Create a new 1d array with values evenly spaced between values 'start' and 'stop'
* For example, linspace(start=3.0, stop=4.0, number=3) will generate [3.0, 3.5, 4.0]
* * @param name name May be null. Name for the output variable * @param dataType Data type of the output array * @param start Start value * @param stop Stop value * @param number Number of values to generate * @return output INDArray with linearly spaced elements (NUMERIC type) */ public SDVariable linspace(String name, DataType dataType, double start, double stop, long number) { SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Linspace(sd,dataType, start, stop, number).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Create a new 1d array with values evenly spaced between values 'start' and 'stop'
* For example, linspace(start=3.0, stop=4.0, number=3) will generate [3.0, 3.5, 4.0]
* * @param start Start value (NUMERIC type) * @param stop Stop value (NUMERIC type) * @param number Number of values to generate (LONG type) * @param dataType Data type of the output array * @return output INDArray with linearly spaced elements (NUMERIC type) */ public SDVariable linspace(SDVariable start, SDVariable stop, SDVariable number, DataType dataType) { SDValidation.validateNumerical("linspace", "start", start); SDValidation.validateNumerical("linspace", "stop", stop); SDValidation.validateInteger("linspace", "number", number); return new org.nd4j.linalg.api.ops.impl.shape.Linspace(sd,start, stop, number, dataType).outputVariable(); } /** * Create a new 1d array with values evenly spaced between values 'start' and 'stop'
* For example, linspace(start=3.0, stop=4.0, number=3) will generate [3.0, 3.5, 4.0]
* * @param name name May be null. Name for the output variable * @param start Start value (NUMERIC type) * @param stop Stop value (NUMERIC type) * @param number Number of values to generate (LONG type) * @param dataType Data type of the output array * @return output INDArray with linearly spaced elements (NUMERIC type) */ public SDVariable linspace(String name, SDVariable start, SDVariable stop, SDVariable number, DataType dataType) { SDValidation.validateNumerical("linspace", "start", start); SDValidation.validateNumerical("linspace", "stop", stop); SDValidation.validateInteger("linspace", "number", number); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Linspace(sd,start, stop, number, dataType).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Less than operation: elementwise x < y
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param x Input array (NUMERIC type) * @param y Double value argument to use in operation * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable lt(SDVariable x, double y) { SDValidation.validateNumerical("lt", "x", x); return new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarLessThan(sd,x, y).outputVariable(); } /** * Less than operation: elementwise x < y
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param name name May be null. Name for the output variable * @param x Input array (NUMERIC type) * @param y Double value argument to use in operation * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable lt(String name, SDVariable x, double y) { SDValidation.validateNumerical("lt", "x", x); SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarLessThan(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Less than operation: elementwise x < y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param x Input 1 (NUMERIC type) * @param y Input 2 (NUMERIC type) * @return output Output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable lt(SDVariable x, SDVariable y) { SDValidation.validateNumerical("lt", "x", x); SDValidation.validateNumerical("lt", "y", y); return new org.nd4j.linalg.api.ops.impl.transforms.custom.LessThan(sd,x, y).outputVariable(); } /** * Less than operation: elementwise x < y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param name name May be null. Name for the output variable * @param x Input 1 (NUMERIC type) * @param y Input 2 (NUMERIC type) * @return output Output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable lt(String name, SDVariable x, SDVariable y) { SDValidation.validateNumerical("lt", "x", x); SDValidation.validateNumerical("lt", "y", y); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.LessThan(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Less than or equals operation: elementwise x <= y
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param x Input array (NUMERIC type) * @param y Double value argument to use in operation * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable lte(SDVariable x, double y) { SDValidation.validateNumerical("lte", "x", x); return new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarLessThanOrEqual(sd,x, y).outputVariable(); } /** * Less than or equals operation: elementwise x <= y
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param name name May be null. Name for the output variable * @param x Input array (NUMERIC type) * @param y Double value argument to use in operation * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable lte(String name, SDVariable x, double y) { SDValidation.validateNumerical("lte", "x", x); SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarLessThanOrEqual(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Less than or equal to operation: elementwise x <= y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param x Input 1 (NUMERIC type) * @param y Input 2 (NUMERIC type) * @return output Output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable lte(SDVariable x, SDVariable y) { SDValidation.validateNumerical("lte", "x", x); SDValidation.validateNumerical("lte", "y", y); return new org.nd4j.linalg.api.ops.impl.transforms.custom.LessThanOrEqual(sd,x, y).outputVariable(); } /** * Less than or equal to operation: elementwise x <= y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param name name May be null. Name for the output variable * @param x Input 1 (NUMERIC type) * @param y Input 2 (NUMERIC type) * @return output Output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable lte(String name, SDVariable x, SDVariable y) { SDValidation.validateNumerical("lte", "x", x); SDValidation.validateNumerical("lte", "y", y); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.LessThanOrEqual(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Returns a boolean mask of equal shape to the input, where the condition is satisfied - value 1 where satisfied, 0 otherwise
* * @param in Input (NUMERIC type) * @param condition Condition * @return output Boolean mask (NUMERIC type) */ public SDVariable matchCondition(SDVariable in, Condition condition) { SDValidation.validateNumerical("matchCondition", "in", in); return new org.nd4j.linalg.api.ops.impl.transforms.bool.MatchConditionTransform(sd,in, condition).outputVariable(); } /** * Returns a boolean mask of equal shape to the input, where the condition is satisfied - value 1 where satisfied, 0 otherwise
* * @param name name May be null. Name for the output variable * @param in Input (NUMERIC type) * @param condition Condition * @return output Boolean mask (NUMERIC type) */ public SDVariable matchCondition(String name, SDVariable in, Condition condition) { SDValidation.validateNumerical("matchCondition", "in", in); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.bool.MatchConditionTransform(sd,in, condition).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Returns a count of the number of elements that satisfy the condition
* * @param in Input (NUMERIC type) * @param condition Condition * @return output Number of elements that the condition is satisfied for (NUMERIC type) */ public SDVariable matchConditionCount(SDVariable in, Condition condition) { SDValidation.validateNumerical("matchConditionCount", "in", in); return new org.nd4j.linalg.api.ops.impl.reduce.longer.MatchCondition(sd,in, condition).outputVariable(); } /** * Returns a count of the number of elements that satisfy the condition
* * @param name name May be null. Name for the output variable * @param in Input (NUMERIC type) * @param condition Condition * @return output Number of elements that the condition is satisfied for (NUMERIC type) */ public SDVariable matchConditionCount(String name, SDVariable in, Condition condition) { SDValidation.validateNumerical("matchConditionCount", "in", in); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.longer.MatchCondition(sd,in, condition).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Returns a count of the number of elements that satisfy the condition (for each slice along the specified dimensions)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param in Input variable (NUMERIC type) * @param condition Condition * @param keepDim If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Number of elements that the condition is satisfied for (NUMERIC type) */ public SDVariable matchConditionCount(SDVariable in, Condition condition, boolean keepDim, int... dimensions) { SDValidation.validateNumerical("matchConditionCount", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.longer.MatchCondition(sd,in, condition, keepDim, dimensions).outputVariable(); } /** * Returns a count of the number of elements that satisfy the condition (for each slice along the specified dimensions)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param condition Condition * @param keepDim If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Number of elements that the condition is satisfied for (NUMERIC type) */ public SDVariable matchConditionCount(String name, SDVariable in, Condition condition, boolean keepDim, int... dimensions) { SDValidation.validateNumerical("matchConditionCount", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.longer.MatchCondition(sd,in, condition, keepDim, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Returns a count of the number of elements that satisfy the condition (for each slice along the specified dimensions)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param in Input variable (NUMERIC type) * @param condition Condition * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Number of elements that the condition is satisfied for (NUMERIC type) */ public SDVariable matchConditionCount(SDVariable in, Condition condition, int... dimensions) { SDValidation.validateNumerical("matchConditionCount", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.longer.MatchCondition(sd,in, condition, false, dimensions).outputVariable(); } /** * Returns a count of the number of elements that satisfy the condition (for each slice along the specified dimensions)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param condition Condition * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Number of elements that the condition is satisfied for (NUMERIC type) */ public SDVariable matchConditionCount(String name, SDVariable in, Condition condition, int... dimensions) { SDValidation.validateNumerical("matchConditionCount", "in", in); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.longer.MatchCondition(sd,in, condition, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Max array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable max(SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("max", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.same.Max(sd,x, keepDims, dimensions).outputVariable(); } /** * Max array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable max(String name, SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("max", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.same.Max(sd,x, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Max array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable max(SDVariable x, int... dimensions) { SDValidation.validateNumerical("max", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.same.Max(sd,x, false, dimensions).outputVariable(); } /** * Max array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable max(String name, SDVariable x, int... dimensions) { SDValidation.validateNumerical("max", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.same.Max(sd,x, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Element-wise maximum operation: out[i] = max(first[i], second[i])
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param first First input array (NUMERIC type) * @param second Second input array (NUMERIC type) * @return output Output variable (NUMERIC type) */ public SDVariable max(SDVariable first, SDVariable second) { SDValidation.validateNumerical("max", "first", first); SDValidation.validateNumerical("max", "second", second); return new org.nd4j.linalg.api.ops.impl.transforms.custom.Max(sd,first, second).outputVariable(); } /** * Element-wise maximum operation: out[i] = max(first[i], second[i])
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param name name May be null. Name for the output variable * @param first First input array (NUMERIC type) * @param second Second input array (NUMERIC type) * @return output Output variable (NUMERIC type) */ public SDVariable max(String name, SDVariable first, SDVariable second) { SDValidation.validateNumerical("max", "first", first); SDValidation.validateNumerical("max", "second", second); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.Max(sd,first, second).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Mean (average) array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable mean(SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("mean", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.floating.Mean(sd,x, keepDims, dimensions).outputVariable(); } /** * Mean (average) array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable mean(String name, SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("mean", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.floating.Mean(sd,x, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Mean (average) array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable mean(SDVariable x, int... dimensions) { SDValidation.validateNumerical("mean", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.floating.Mean(sd,x, false, dimensions).outputVariable(); } /** * Mean (average) array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable mean(String name, SDVariable x, int... dimensions) { SDValidation.validateNumerical("mean", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.floating.Mean(sd,x, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * The merge operation is a control operation that forwards the either of the inputs to the output, when
* the first of them becomes available. If both are available, the output is undefined (either input could
* be forwarded to the output)
* * @param x Input variable (NUMERIC type) * @param y Input variable (NUMERIC type) * @return output Output (NUMERIC type) */ public SDVariable merge(SDVariable x, SDVariable y) { SDValidation.validateNumerical("merge", "x", x); SDValidation.validateNumerical("merge", "y", y); return new org.nd4j.linalg.api.ops.impl.controlflow.compat.Merge(sd,x, y).outputVariable(); } /** * The merge operation is a control operation that forwards the either of the inputs to the output, when
* the first of them becomes available. If both are available, the output is undefined (either input could
* be forwarded to the output)
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param y Input variable (NUMERIC type) * @return output Output (NUMERIC type) */ public SDVariable merge(String name, SDVariable x, SDVariable y) { SDValidation.validateNumerical("merge", "x", x); SDValidation.validateNumerical("merge", "y", y); SDVariable out = new org.nd4j.linalg.api.ops.impl.controlflow.compat.Merge(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Minimum array reduction operation, optionally along specified dimensions. out = min(in)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable min(SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("min", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.same.Min(sd,x, keepDims, dimensions).outputVariable(); } /** * Minimum array reduction operation, optionally along specified dimensions. out = min(in)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable min(String name, SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("min", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.same.Min(sd,x, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Minimum array reduction operation, optionally along specified dimensions. out = min(in)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable min(SDVariable x, int... dimensions) { SDValidation.validateNumerical("min", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.same.Min(sd,x, false, dimensions).outputVariable(); } /** * Minimum array reduction operation, optionally along specified dimensions. out = min(in)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable min(String name, SDVariable x, int... dimensions) { SDValidation.validateNumerical("min", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.same.Min(sd,x, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Element-wise minimum operation: out[i] = min(first[i], second[i])
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param first First input array (NUMERIC type) * @param second Second input array (NUMERIC type) * @return output Second input array (NUMERIC type) */ public SDVariable min(SDVariable first, SDVariable second) { SDValidation.validateNumerical("min", "first", first); SDValidation.validateNumerical("min", "second", second); return new org.nd4j.linalg.api.ops.impl.transforms.custom.Min(sd,first, second).outputVariable(); } /** * Element-wise minimum operation: out[i] = min(first[i], second[i])
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * @param name name May be null. Name for the output variable * @param first First input array (NUMERIC type) * @param second Second input array (NUMERIC type) * @return output Second input array (NUMERIC type) */ public SDVariable min(String name, SDVariable first, SDVariable second) { SDValidation.validateNumerical("min", "first", first); SDValidation.validateNumerical("min", "second", second); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.Min(sd,first, second).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Matrix multiplication: out = mmul(x,y)
* Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.
* * @param x First input variable (NUMERIC type) * @param y Second input variable (NUMERIC type) * @param transposeX Transpose x (first argument) * @param transposeY Transpose y (second argument) * @param transposeZ Transpose result array * @return output (NUMERIC type) */ public SDVariable mmul(SDVariable x, SDVariable y, boolean transposeX, boolean transposeY, boolean transposeZ) { SDValidation.validateNumerical("mmul", "x", x); SDValidation.validateNumerical("mmul", "y", y); return new org.nd4j.linalg.api.ops.impl.reduce.Mmul(sd,x, y, transposeX, transposeY, transposeZ).outputVariable(); } /** * Matrix multiplication: out = mmul(x,y)
* Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.
* * @param name name May be null. Name for the output variable * @param x First input variable (NUMERIC type) * @param y Second input variable (NUMERIC type) * @param transposeX Transpose x (first argument) * @param transposeY Transpose y (second argument) * @param transposeZ Transpose result array * @return output (NUMERIC type) */ public SDVariable mmul(String name, SDVariable x, SDVariable y, boolean transposeX, boolean transposeY, boolean transposeZ) { SDValidation.validateNumerical("mmul", "x", x); SDValidation.validateNumerical("mmul", "y", y); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.Mmul(sd,x, y, transposeX, transposeY, transposeZ).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Matrix multiplication: out = mmul(x,y)
* Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.
* * @param x First input variable (NUMERIC type) * @param y Second input variable (NUMERIC type) * @return output (NUMERIC type) */ public SDVariable mmul(SDVariable x, SDVariable y) { SDValidation.validateNumerical("mmul", "x", x); SDValidation.validateNumerical("mmul", "y", y); return new org.nd4j.linalg.api.ops.impl.reduce.Mmul(sd,x, y, false, false, false).outputVariable(); } /** * Matrix multiplication: out = mmul(x,y)
* Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.
* * @param name name May be null. Name for the output variable * @param x First input variable (NUMERIC type) * @param y Second input variable (NUMERIC type) * @return output (NUMERIC type) */ public SDVariable mmul(String name, SDVariable x, SDVariable y) { SDValidation.validateNumerical("mmul", "x", x); SDValidation.validateNumerical("mmul", "y", y); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.Mmul(sd,x, y, false, false, false).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Not equals operation: elementwise x != y
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param x Input array (NUMERIC type) * @param y Double value argument to use in operation * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable neq(SDVariable x, double y) { SDValidation.validateNumerical("neq", "x", x); return new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarNotEquals(sd,x, y).outputVariable(); } /** * Not equals operation: elementwise x != y
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param name name May be null. Name for the output variable * @param x Input array (NUMERIC type) * @param y Double value argument to use in operation * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable neq(String name, SDVariable x, double y) { SDValidation.validateNumerical("neq", "x", x); SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarNotEquals(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Not equal to operation: elementwise x != y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param x Input 1 (NUMERIC type) * @param y Input 2 (NUMERIC type) * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable neq(SDVariable x, SDVariable y) { SDValidation.validateNumerical("neq", "x", x); SDValidation.validateNumerical("neq", "y", y); return new org.nd4j.linalg.api.ops.impl.transforms.custom.NotEqualTo(sd,x, y).outputVariable(); } /** * Not equal to operation: elementwise x != y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
* * Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
* * Return boolean array with values true where satisfied, or false otherwise.
* * @param name name May be null. Name for the output variable * @param x Input 1 (NUMERIC type) * @param y Input 2 (NUMERIC type) * @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type) */ public SDVariable neq(String name, SDVariable x, SDVariable y) { SDValidation.validateNumerical("neq", "x", x); SDValidation.validateNumerical("neq", "y", y); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.NotEqualTo(sd,x, y).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Norm1 (L1 norm) reduction operation: The output contains the L1 norm for each tensor/subset along the specified dimensions:
* out = sum_i abs(x[i])
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable norm1(SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("norm1", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.floating.Norm1(sd,x, keepDims, dimensions).outputVariable(); } /** * Norm1 (L1 norm) reduction operation: The output contains the L1 norm for each tensor/subset along the specified dimensions:
* out = sum_i abs(x[i])
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable norm1(String name, SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("norm1", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.floating.Norm1(sd,x, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Norm1 (L1 norm) reduction operation: The output contains the L1 norm for each tensor/subset along the specified dimensions:
* out = sum_i abs(x[i])
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param dimensions dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable norm1(SDVariable x, int... dimensions) { SDValidation.validateNumerical("norm1", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.floating.Norm1(sd,x, false, dimensions).outputVariable(); } /** * Norm1 (L1 norm) reduction operation: The output contains the L1 norm for each tensor/subset along the specified dimensions:
* out = sum_i abs(x[i])
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param dimensions dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable norm1(String name, SDVariable x, int... dimensions) { SDValidation.validateNumerical("norm1", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.floating.Norm1(sd,x, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Norm2 (L2 norm) reduction operation: The output contains the L2 norm for each tensor/subset along the specified dimensions:
* out = sqrt(sum_i x[i]^2)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions dimensions dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable norm2(SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("norm2", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.floating.Norm2(sd,x, keepDims, dimensions).outputVariable(); } /** * Norm2 (L2 norm) reduction operation: The output contains the L2 norm for each tensor/subset along the specified dimensions:
* out = sqrt(sum_i x[i]^2)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions dimensions dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable norm2(String name, SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("norm2", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.floating.Norm2(sd,x, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Norm2 (L2 norm) reduction operation: The output contains the L2 norm for each tensor/subset along the specified dimensions:
* out = sqrt(sum_i x[i]^2)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param dimensions dimensions dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable norm2(SDVariable x, int... dimensions) { SDValidation.validateNumerical("norm2", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.floating.Norm2(sd,x, false, dimensions).outputVariable(); } /** * Norm2 (L2 norm) reduction operation: The output contains the L2 norm for each tensor/subset along the specified dimensions:
* out = sqrt(sum_i x[i]^2)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param dimensions dimensions dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable norm2(String name, SDVariable x, int... dimensions) { SDValidation.validateNumerical("norm2", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.floating.Norm2(sd,x, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Max norm (infinity norm) reduction operation: The output contains the max norm for each tensor/subset along the
* specified dimensions:
* out = max(abs(x[i]))
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable normmax(SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("normmax", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.floating.NormMax(sd,x, keepDims, dimensions).outputVariable(); } /** * Max norm (infinity norm) reduction operation: The output contains the max norm for each tensor/subset along the
* specified dimensions:
* out = max(abs(x[i]))
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable normmax(String name, SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("normmax", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.floating.NormMax(sd,x, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Max norm (infinity norm) reduction operation: The output contains the max norm for each tensor/subset along the
* specified dimensions:
* out = max(abs(x[i]))
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param dimensions dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable normmax(SDVariable x, int... dimensions) { SDValidation.validateNumerical("normmax", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.floating.NormMax(sd,x, false, dimensions).outputVariable(); } /** * Max norm (infinity norm) reduction operation: The output contains the max norm for each tensor/subset along the
* specified dimensions:
* out = max(abs(x[i]))
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param dimensions dimensions to reduce over (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable normmax(String name, SDVariable x, int... dimensions) { SDValidation.validateNumerical("normmax", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.floating.NormMax(sd,x, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Convert the array to a one-hot array with walues and for each entry
* If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
* with {out[i, ..., j, in[i,...,j]] with other values being set to
* * @param indices Indices - value 0 to depth-1 (NUMERIC type) * @param depth Number of classes * @param axis * @param on * @param off * @param dataType Output data type * @return output Output variable (NUMERIC type) */ public SDVariable oneHot(SDVariable indices, int depth, int axis, double on, double off, DataType dataType) { SDValidation.validateNumerical("oneHot", "indices", indices); return new org.nd4j.linalg.api.ops.impl.shape.OneHot(sd,indices, depth, axis, on, off, dataType).outputVariable(); } /** * Convert the array to a one-hot array with walues and for each entry
* If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
* with {out[i, ..., j, in[i,...,j]] with other values being set to
* * @param name name May be null. Name for the output variable * @param indices Indices - value 0 to depth-1 (NUMERIC type) * @param depth Number of classes * @param axis * @param on * @param off * @param dataType Output data type * @return output Output variable (NUMERIC type) */ public SDVariable oneHot(String name, SDVariable indices, int depth, int axis, double on, double off, DataType dataType) { SDValidation.validateNumerical("oneHot", "indices", indices); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.OneHot(sd,indices, depth, axis, on, off, dataType).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Convert the array to a one-hot array with walues and for each entry
* If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
* with {out[i, ..., j, in[i,...,j]] with other values being set to
* * @param indices Indices - value 0 to depth-1 (NUMERIC type) * @param depth Number of classes * @param axis * @param on * @param off * @return output Output variable (NUMERIC type) */ public SDVariable oneHot(SDVariable indices, int depth, int axis, double on, double off) { SDValidation.validateNumerical("oneHot", "indices", indices); return new org.nd4j.linalg.api.ops.impl.shape.OneHot(sd,indices, depth, axis, on, off, DataType.FLOAT).outputVariable(); } /** * Convert the array to a one-hot array with walues and for each entry
* If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
* with {out[i, ..., j, in[i,...,j]] with other values being set to
* * @param name name May be null. Name for the output variable * @param indices Indices - value 0 to depth-1 (NUMERIC type) * @param depth Number of classes * @param axis * @param on * @param off * @return output Output variable (NUMERIC type) */ public SDVariable oneHot(String name, SDVariable indices, int depth, int axis, double on, double off) { SDValidation.validateNumerical("oneHot", "indices", indices); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.OneHot(sd,indices, depth, axis, on, off, DataType.FLOAT).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Convert the array to a one-hot array with walues 0 and 1 for each entry
* If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
* with out[i, ..., j, in[i,...,j]] = 1 with other values being set to 0
* see oneHot(SDVariable, int, int, double, double)
* * @param indices Indices - value 0 to depth-1 (NUMERIC type) * @param depth Number of classes * @return output Output variable (NUMERIC type) */ public SDVariable oneHot(SDVariable indices, int depth) { SDValidation.validateNumerical("oneHot", "indices", indices); return new org.nd4j.linalg.api.ops.impl.shape.OneHot(sd,indices, depth).outputVariable(); } /** * Convert the array to a one-hot array with walues 0 and 1 for each entry
* If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
* with out[i, ..., j, in[i,...,j]] = 1 with other values being set to 0
* see oneHot(SDVariable, int, int, double, double)
* * @param name name May be null. Name for the output variable * @param indices Indices - value 0 to depth-1 (NUMERIC type) * @param depth Number of classes * @return output Output variable (NUMERIC type) */ public SDVariable oneHot(String name, SDVariable indices, int depth) { SDValidation.validateNumerical("oneHot", "indices", indices); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.OneHot(sd,indices, depth).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Return a variable of all 1s, with the same shape as the input variable. Note that this is dynamic:
* if the input shape changes in later execution, the returned variable's shape will also be updated
* * @param input Input INDArray (NUMERIC type) * @return output A new INDArray with the same (dynamic) shape as the input (NUMERIC type) */ public SDVariable onesLike(SDVariable input) { SDValidation.validateNumerical("onesLike", "input", input); return new org.nd4j.linalg.api.ops.impl.shape.OnesLike(sd,input).outputVariable(); } /** * Return a variable of all 1s, with the same shape as the input variable. Note that this is dynamic:
* if the input shape changes in later execution, the returned variable's shape will also be updated
* * @param name name May be null. Name for the output variable * @param input Input INDArray (NUMERIC type) * @return output A new INDArray with the same (dynamic) shape as the input (NUMERIC type) */ public SDVariable onesLike(String name, SDVariable input) { SDValidation.validateNumerical("onesLike", "input", input); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.OnesLike(sd,input).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * As per onesLike(String, SDVariable) but the output datatype may be specified
* * @param input (NUMERIC type) * @param dataType * @return output (NUMERIC type) */ public SDVariable onesLike(SDVariable input, DataType dataType) { SDValidation.validateNumerical("onesLike", "input", input); return new org.nd4j.linalg.api.ops.impl.shape.OnesLike(sd,input, dataType).outputVariable(); } /** * As per onesLike(String, SDVariable) but the output datatype may be specified
* * @param name name May be null. Name for the output variable * @param input (NUMERIC type) * @param dataType * @return output (NUMERIC type) */ public SDVariable onesLike(String name, SDVariable input, DataType dataType) { SDValidation.validateNumerical("onesLike", "input", input); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.OnesLike(sd,input, dataType).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Array permutation operation: permute the dimensions according to the specified permutation indices.
* Example: if input has shape [a,b,c] and dimensions = [2,0,1] the output has shape [c,a,b]
* * @param x Input variable (NUMERIC type) * @param dimensions Permute dimensions (INT type) * @return output Output variable (permuted input) (NUMERIC type) */ public SDVariable permute(SDVariable x, SDVariable dimensions) { SDValidation.validateNumerical("permute", "x", x); SDValidation.validateInteger("permute", "dimensions", dimensions); return new org.nd4j.linalg.api.ops.impl.shape.Permute(sd,x, dimensions).outputVariable(); } /** * Array permutation operation: permute the dimensions according to the specified permutation indices.
* Example: if input has shape [a,b,c] and dimensions = [2,0,1] the output has shape [c,a,b]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param dimensions Permute dimensions (INT type) * @return output Output variable (permuted input) (NUMERIC type) */ public SDVariable permute(String name, SDVariable x, SDVariable dimensions) { SDValidation.validateNumerical("permute", "x", x); SDValidation.validateInteger("permute", "dimensions", dimensions); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Permute(sd,x, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Array permutation operation: permute the dimensions according to the specified permutation indices.
* Example: if input has shape [a,b,c] and dimensions = [2,0,1] the output has shape [c,a,b]
* * @param x Input variable (NUMERIC type) * @param dimensions (Size: AtLeast(min=0)) * @return output Output variable (permuted input) (NUMERIC type) */ public SDVariable permute(SDVariable x, int... dimensions) { SDValidation.validateNumerical("permute", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.shape.Permute(sd,x, dimensions).outputVariable(); } /** * Array permutation operation: permute the dimensions according to the specified permutation indices.
* Example: if input has shape [a,b,c] and dimensions = [2,0,1] the output has shape [c,a,b]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param dimensions (Size: AtLeast(min=0)) * @return output Output variable (permuted input) (NUMERIC type) */ public SDVariable permute(String name, SDVariable x, int... dimensions) { SDValidation.validateNumerical("permute", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Permute(sd,x, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Product array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output (NUMERIC type) */ public SDVariable prod(SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("prod", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.same.Prod(sd,x, keepDims, dimensions).outputVariable(); } /** * Product array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output (NUMERIC type) */ public SDVariable prod(String name, SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("prod", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.same.Prod(sd,x, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Product array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output (NUMERIC type) */ public SDVariable prod(SDVariable x, int... dimensions) { SDValidation.validateNumerical("prod", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.same.Prod(sd,x, false, dimensions).outputVariable(); } /** * Product array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output (NUMERIC type) */ public SDVariable prod(String name, SDVariable x, int... dimensions) { SDValidation.validateNumerical("prod", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.same.Prod(sd,x, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Create a new variable with a 1d array, where the values start at from and increment by step
* up to (but not including) limit.
* For example, range(1.0, 3.0, 0.5) will return [1.0, 1.5, 2.0, 2.5]
* * @param from Initial/smallest value * @param to Largest value (exclusive) * @param step Step size * @param dataType * @return output INDArray with the specified values (NUMERIC type) */ public SDVariable range(double from, double to, double step, DataType dataType) { return new org.nd4j.linalg.api.ops.random.impl.Range(sd,from, to, step, dataType).outputVariable(); } /** * Create a new variable with a 1d array, where the values start at from and increment by step
* up to (but not including) limit.
* For example, range(1.0, 3.0, 0.5) will return [1.0, 1.5, 2.0, 2.5]
* * @param name name May be null. Name for the output variable * @param from Initial/smallest value * @param to Largest value (exclusive) * @param step Step size * @param dataType * @return output INDArray with the specified values (NUMERIC type) */ public SDVariable range(String name, double from, double to, double step, DataType dataType) { SDVariable out = new org.nd4j.linalg.api.ops.random.impl.Range(sd,from, to, step, dataType).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Create a new variable with a 1d array, where the values start at from and increment by step
* up to (but not including) limit.
* For example, range(1.0, 3.0, 0.5) will return [1.0, 1.5, 2.0, 2.5]
* * @param from Initial/smallest value (NUMERIC type) * @param to Largest value (exclusive) (NUMERIC type) * @param step Step size (NUMERIC type) * @param dataType * @return output INDArray with the specified values (NUMERIC type) */ public SDVariable range(SDVariable from, SDVariable to, SDVariable step, DataType dataType) { SDValidation.validateNumerical("range", "from", from); SDValidation.validateNumerical("range", "to", to); SDValidation.validateNumerical("range", "step", step); return new org.nd4j.linalg.api.ops.random.impl.Range(sd,from, to, step, dataType).outputVariable(); } /** * Create a new variable with a 1d array, where the values start at from and increment by step
* up to (but not including) limit.
* For example, range(1.0, 3.0, 0.5) will return [1.0, 1.5, 2.0, 2.5]
* * @param name name May be null. Name for the output variable * @param from Initial/smallest value (NUMERIC type) * @param to Largest value (exclusive) (NUMERIC type) * @param step Step size (NUMERIC type) * @param dataType * @return output INDArray with the specified values (NUMERIC type) */ public SDVariable range(String name, SDVariable from, SDVariable to, SDVariable step, DataType dataType) { SDValidation.validateNumerical("range", "from", from); SDValidation.validateNumerical("range", "to", to); SDValidation.validateNumerical("range", "step", step); SDVariable out = new org.nd4j.linalg.api.ops.random.impl.Range(sd,from, to, step, dataType).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Returns the rank (number of dimensions, i.e., length(shape)) of the specified INDArray as a 0D scalar variable
* * @param in Input variable (NUMERIC type) * @return output (scalar) output variable with value equal to the rank of the input variable (NUMERIC type) */ public SDVariable rank(SDVariable in) { SDValidation.validateNumerical("rank", "in", in); return new org.nd4j.linalg.api.ops.impl.shape.Rank(sd,in).outputVariable(); } /** * Returns the rank (number of dimensions, i.e., length(shape)) of the specified INDArray as a 0D scalar variable
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @return output (scalar) output variable with value equal to the rank of the input variable (NUMERIC type) */ public SDVariable rank(String name, SDVariable in) { SDValidation.validateNumerical("rank", "in", in); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Rank(sd,in).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Element-wise replace where condition:
* out[i] = from[i] if condition(update[i]) is satisfied, or
* out[i] = update[i] if condition(update[i]) is NOT satisfied
* * @param update Source array (NUMERIC type) * @param from Replacement values array (used conditionally). Must be same shape as 'update' array (NUMERIC type) * @param condition Condition to check on update array elements * @return output New array with values replaced where condition is satisfied (NUMERIC type) */ public SDVariable replaceWhere(SDVariable update, SDVariable from, Condition condition) { SDValidation.validateNumerical("replaceWhere", "update", update); SDValidation.validateNumerical("replaceWhere", "from", from); return new org.nd4j.linalg.api.ops.impl.transforms.comparison.CompareAndReplace(sd,update, from, condition).outputVariable(); } /** * Element-wise replace where condition:
* out[i] = from[i] if condition(update[i]) is satisfied, or
* out[i] = update[i] if condition(update[i]) is NOT satisfied
* * @param name name May be null. Name for the output variable * @param update Source array (NUMERIC type) * @param from Replacement values array (used conditionally). Must be same shape as 'update' array (NUMERIC type) * @param condition Condition to check on update array elements * @return output New array with values replaced where condition is satisfied (NUMERIC type) */ public SDVariable replaceWhere(String name, SDVariable update, SDVariable from, Condition condition) { SDValidation.validateNumerical("replaceWhere", "update", update); SDValidation.validateNumerical("replaceWhere", "from", from); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.comparison.CompareAndReplace(sd,update, from, condition).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Element-wise replace where condition:
* out[i] = value if condition(update[i]) is satisfied, or
* out[i] = update[i] if condition(update[i]) is NOT satisfied
* * @param update Source array (NUMERIC type) * @param value Value to set at the output, if the condition is satisfied * @param condition Condition to check on update array elements * @return output New array with values replaced where condition is satisfied (NUMERIC type) */ public SDVariable replaceWhere(SDVariable update, double value, Condition condition) { SDValidation.validateNumerical("replaceWhere", "update", update); return new org.nd4j.linalg.api.ops.impl.transforms.comparison.CompareAndSet(sd,update, value, condition).outputVariable(); } /** * Element-wise replace where condition:
* out[i] = value if condition(update[i]) is satisfied, or
* out[i] = update[i] if condition(update[i]) is NOT satisfied
* * @param name name May be null. Name for the output variable * @param update Source array (NUMERIC type) * @param value Value to set at the output, if the condition is satisfied * @param condition Condition to check on update array elements * @return output New array with values replaced where condition is satisfied (NUMERIC type) */ public SDVariable replaceWhere(String name, SDVariable update, double value, Condition condition) { SDValidation.validateNumerical("replaceWhere", "update", update); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.comparison.CompareAndSet(sd,update, value, condition).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Reshape the input variable to the specified (fixed) shape. The output variable will have the same values as the
* input, but with the specified shape.
* Note that prod(shape) must match length(input) == prod(input.shape)
* * @param x Input variable (NUMERIC type) * @param shape New shape for variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public SDVariable reshape(SDVariable x, SDVariable shape) { SDValidation.validateNumerical("reshape", "x", x); SDValidation.validateNumerical("reshape", "shape", shape); return new org.nd4j.linalg.api.ops.impl.shape.Reshape(sd,x, shape).outputVariable(); } /** * Reshape the input variable to the specified (fixed) shape. The output variable will have the same values as the
* input, but with the specified shape.
* Note that prod(shape) must match length(input) == prod(input.shape)
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param shape New shape for variable (NUMERIC type) * @return output Output variable (NUMERIC type) */ public SDVariable reshape(String name, SDVariable x, SDVariable shape) { SDValidation.validateNumerical("reshape", "x", x); SDValidation.validateNumerical("reshape", "shape", shape); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Reshape(sd,x, shape).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Reshape the input variable to the specified (fixed) shape. The output variable will have the same values as the
* input, but with the specified shape.
* Note that prod(shape) must match length(input) == prod(input.shape)
* * @param x Input variable (NUMERIC type) * @param shape New shape for variable (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable reshape(SDVariable x, long... shape) { SDValidation.validateNumerical("reshape", "x", x); Preconditions.checkArgument(shape.length >= 0, "shape has incorrect size/length. Expected: shape.length >= 0, got %s", shape.length); return new org.nd4j.linalg.api.ops.impl.shape.Reshape(sd,x, shape).outputVariable(); } /** * Reshape the input variable to the specified (fixed) shape. The output variable will have the same values as the
* input, but with the specified shape.
* Note that prod(shape) must match length(input) == prod(input.shape)
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param shape New shape for variable (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable reshape(String name, SDVariable x, long... shape) { SDValidation.validateNumerical("reshape", "x", x); Preconditions.checkArgument(shape.length >= 0, "shape has incorrect size/length. Expected: shape.length >= 0, got %s", shape.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Reshape(sd,x, shape).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Reverse the values of an array for the specified dimensions
* If input is:
* [ 1, 2, 3]
* [ 4, 5, 6]
* then
* reverse(in, 0):
* [3, 2, 1]
* [6, 5, 4]
* reverse(in, 1):
* [4, 5, 6]
* [1, 2 3]
* * @param x Input variable (NUMERIC type) * @param dimensions Input variable (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable reverse(SDVariable x, int... dimensions) { SDValidation.validateNumerical("reverse", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.transforms.custom.Reverse(sd,x, dimensions).outputVariable(); } /** * Reverse the values of an array for the specified dimensions
* If input is:
* [ 1, 2, 3]
* [ 4, 5, 6]
* then
* reverse(in, 0):
* [3, 2, 1]
* [6, 5, 4]
* reverse(in, 1):
* [4, 5, 6]
* [1, 2 3]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param dimensions Input variable (Size: AtLeast(min=0)) * @return output Output variable (NUMERIC type) */ public SDVariable reverse(String name, SDVariable x, int... dimensions) { SDValidation.validateNumerical("reverse", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.Reverse(sd,x, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Reverse sequence op: for each slice along dimension seqDimension, the first seqLength values are reversed
* * @param x Input variable (NUMERIC type) * @param seq_lengths Length of the sequences (INT type) * @param seqDim Sequence dimension * @param batchDim Batch dimension * @return output Reversed sequences (NUMERIC type) */ public SDVariable reverseSequence(SDVariable x, SDVariable seq_lengths, int seqDim, int batchDim) { SDValidation.validateNumerical("reverseSequence", "x", x); SDValidation.validateInteger("reverseSequence", "seq_lengths", seq_lengths); return new org.nd4j.linalg.api.ops.impl.transforms.custom.ReverseSequence(sd,x, seq_lengths, seqDim, batchDim).outputVariable(); } /** * Reverse sequence op: for each slice along dimension seqDimension, the first seqLength values are reversed
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param seq_lengths Length of the sequences (INT type) * @param seqDim Sequence dimension * @param batchDim Batch dimension * @return output Reversed sequences (NUMERIC type) */ public SDVariable reverseSequence(String name, SDVariable x, SDVariable seq_lengths, int seqDim, int batchDim) { SDValidation.validateNumerical("reverseSequence", "x", x); SDValidation.validateInteger("reverseSequence", "seq_lengths", seq_lengths); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.ReverseSequence(sd,x, seq_lengths, seqDim, batchDim).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Reverse sequence op: for each slice along dimension seqDimension, the first seqLength values are reversed
* * @param x Input variable (NUMERIC type) * @param seq_lengths Length of the sequences (INT type) * @return output Reversed sequences (NUMERIC type) */ public SDVariable reverseSequence(SDVariable x, SDVariable seq_lengths) { SDValidation.validateNumerical("reverseSequence", "x", x); SDValidation.validateInteger("reverseSequence", "seq_lengths", seq_lengths); return new org.nd4j.linalg.api.ops.impl.transforms.custom.ReverseSequence(sd,x, seq_lengths, -1, 0).outputVariable(); } /** * Reverse sequence op: for each slice along dimension seqDimension, the first seqLength values are reversed
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param seq_lengths Length of the sequences (INT type) * @return output Reversed sequences (NUMERIC type) */ public SDVariable reverseSequence(String name, SDVariable x, SDVariable seq_lengths) { SDValidation.validateNumerical("reverseSequence", "x", x); SDValidation.validateInteger("reverseSequence", "seq_lengths", seq_lengths); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.ReverseSequence(sd,x, seq_lengths, -1, 0).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Element-wise scalar floor modulus operation: out = floorMod(in, value).
* i.e., returns the remainder after division by 'value'
* * @param in Input variable (NUMERIC type) * @param value Scalar value to compare * @return output Output variable (NUMERIC type) */ public SDVariable scalarFloorMod(SDVariable in, double value) { SDValidation.validateNumerical("scalarFloorMod", "in", in); return new org.nd4j.linalg.api.ops.impl.scalar.ScalarFMod(sd,in, value).outputVariable(); } /** * Element-wise scalar floor modulus operation: out = floorMod(in, value).
* i.e., returns the remainder after division by 'value'
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param value Scalar value to compare * @return output Output variable (NUMERIC type) */ public SDVariable scalarFloorMod(String name, SDVariable in, double value) { SDValidation.validateNumerical("scalarFloorMod", "in", in); SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.ScalarFMod(sd,in, value).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Element-wise scalar maximum operation: out = max(in, value)
* * @param in Input variable (NUMERIC type) * @param value Scalar value to compare * @return output Scalar value to compare (NUMERIC type) */ public SDVariable scalarMax(SDVariable in, double value) { SDValidation.validateNumerical("scalarMax", "in", in); return new org.nd4j.linalg.api.ops.impl.scalar.ScalarMax(sd,in, value).outputVariable(); } /** * Element-wise scalar maximum operation: out = max(in, value)
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param value Scalar value to compare * @return output Scalar value to compare (NUMERIC type) */ public SDVariable scalarMax(String name, SDVariable in, double value) { SDValidation.validateNumerical("scalarMax", "in", in); SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.ScalarMax(sd,in, value).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Element-wise scalar minimum operation: out = min(in, value)
* * @param in Input variable (NUMERIC type) * @param value Scalar value to compare * @return output Output variable (NUMERIC type) */ public SDVariable scalarMin(SDVariable in, double value) { SDValidation.validateNumerical("scalarMin", "in", in); return new org.nd4j.linalg.api.ops.impl.scalar.ScalarMin(sd,in, value).outputVariable(); } /** * Element-wise scalar minimum operation: out = min(in, value)
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param value Scalar value to compare * @return output Output variable (NUMERIC type) */ public SDVariable scalarMin(String name, SDVariable in, double value) { SDValidation.validateNumerical("scalarMin", "in", in); SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.ScalarMin(sd,in, value).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Return a variable with equal shape to the input, but all elements set to value 'set'
* * @param in Input variable (NUMERIC type) * @param set Value to set * @return output Output variable (NUMERIC type) */ public SDVariable scalarSet(SDVariable in, double set) { SDValidation.validateNumerical("scalarSet", "in", in); return new org.nd4j.linalg.api.ops.impl.scalar.ScalarSet(sd,in, set).outputVariable(); } /** * Return a variable with equal shape to the input, but all elements set to value 'set'
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param set Value to set * @return output Output variable (NUMERIC type) */ public SDVariable scalarSet(String name, SDVariable in, double set) { SDValidation.validateNumerical("scalarSet", "in", in); SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.ScalarSet(sd,in, set).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Scatter addition operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterAdd(SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterAdd", "ref", ref); SDValidation.validateNumerical("scatterAdd", "indices", indices); SDValidation.validateNumerical("scatterAdd", "updates", updates); return new org.nd4j.linalg.api.ops.impl.scatter.ScatterAdd(sd,ref, indices, updates).outputVariable(); } /** * Scatter addition operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param name name May be null. Name for the output variable * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterAdd(String name, SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterAdd", "ref", ref); SDValidation.validateNumerical("scatterAdd", "indices", indices); SDValidation.validateNumerical("scatterAdd", "updates", updates); SDVariable out = new org.nd4j.linalg.api.ops.impl.scatter.ScatterAdd(sd,ref, indices, updates).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Scatter division operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterDiv(SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterDiv", "ref", ref); SDValidation.validateNumerical("scatterDiv", "indices", indices); SDValidation.validateNumerical("scatterDiv", "updates", updates); return new org.nd4j.linalg.api.ops.impl.scatter.ScatterDiv(sd,ref, indices, updates).outputVariable(); } /** * Scatter division operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param name name May be null. Name for the output variable * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterDiv(String name, SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterDiv", "ref", ref); SDValidation.validateNumerical("scatterDiv", "indices", indices); SDValidation.validateNumerical("scatterDiv", "updates", updates); SDVariable out = new org.nd4j.linalg.api.ops.impl.scatter.ScatterDiv(sd,ref, indices, updates).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Scatter max operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterMax(SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterMax", "ref", ref); SDValidation.validateNumerical("scatterMax", "indices", indices); SDValidation.validateNumerical("scatterMax", "updates", updates); return new org.nd4j.linalg.api.ops.impl.scatter.ScatterMax(sd,ref, indices, updates).outputVariable(); } /** * Scatter max operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param name name May be null. Name for the output variable * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterMax(String name, SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterMax", "ref", ref); SDValidation.validateNumerical("scatterMax", "indices", indices); SDValidation.validateNumerical("scatterMax", "updates", updates); SDVariable out = new org.nd4j.linalg.api.ops.impl.scatter.ScatterMax(sd,ref, indices, updates).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Scatter min operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterMin(SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterMin", "ref", ref); SDValidation.validateNumerical("scatterMin", "indices", indices); SDValidation.validateNumerical("scatterMin", "updates", updates); return new org.nd4j.linalg.api.ops.impl.scatter.ScatterMin(sd,ref, indices, updates).outputVariable(); } /** * Scatter min operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param name name May be null. Name for the output variable * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterMin(String name, SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterMin", "ref", ref); SDValidation.validateNumerical("scatterMin", "indices", indices); SDValidation.validateNumerical("scatterMin", "updates", updates); SDVariable out = new org.nd4j.linalg.api.ops.impl.scatter.ScatterMin(sd,ref, indices, updates).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Scatter multiplication operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterMul(SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterMul", "ref", ref); SDValidation.validateNumerical("scatterMul", "indices", indices); SDValidation.validateNumerical("scatterMul", "updates", updates); return new org.nd4j.linalg.api.ops.impl.scatter.ScatterMul(sd,ref, indices, updates).outputVariable(); } /** * Scatter multiplication operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param name name May be null. Name for the output variable * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterMul(String name, SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterMul", "ref", ref); SDValidation.validateNumerical("scatterMul", "indices", indices); SDValidation.validateNumerical("scatterMul", "updates", updates); SDVariable out = new org.nd4j.linalg.api.ops.impl.scatter.ScatterMul(sd,ref, indices, updates).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Scatter subtraction operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterSub(SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterSub", "ref", ref); SDValidation.validateNumerical("scatterSub", "indices", indices); SDValidation.validateNumerical("scatterSub", "updates", updates); return new org.nd4j.linalg.api.ops.impl.scatter.ScatterSub(sd,ref, indices, updates).outputVariable(); } /** * Scatter subtraction operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param name name May be null. Name for the output variable * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterSub(String name, SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterSub", "ref", ref); SDValidation.validateNumerical("scatterSub", "indices", indices); SDValidation.validateNumerical("scatterSub", "updates", updates); SDVariable out = new org.nd4j.linalg.api.ops.impl.scatter.ScatterSub(sd,ref, indices, updates).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Scatter update operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterUpdate(SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterUpdate", "ref", ref); SDValidation.validateNumerical("scatterUpdate", "indices", indices); SDValidation.validateNumerical("scatterUpdate", "updates", updates); return new org.nd4j.linalg.api.ops.impl.scatter.ScatterUpdate(sd,ref, indices, updates).outputVariable(); } /** * Scatter update operation.
* * If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
* * @param name name May be null. Name for the output variable * @param ref Initial/source variable (NUMERIC type) * @param indices Indices array (NUMERIC type) * @param updates Updates to add to the initial/source array (NUMERIC type) * @return output The updated variable (NUMERIC type) */ public SDVariable scatterUpdate(String name, SDVariable ref, SDVariable indices, SDVariable updates) { SDValidation.validateNumerical("scatterUpdate", "ref", ref); SDValidation.validateNumerical("scatterUpdate", "indices", indices); SDValidation.validateNumerical("scatterUpdate", "updates", updates); SDVariable out = new org.nd4j.linalg.api.ops.impl.scatter.ScatterUpdate(sd,ref, indices, updates).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Segment max operation.
* * If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
* * @param data Data to perform segment max on (NDARRAY type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @return output Segment output (NUMERIC type) */ public SDVariable segmentMax(SDVariable data, SDVariable segmentIds) { SDValidation.validateNumerical("segmentMax", "segmentIds", segmentIds); return new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentMax(sd,data, segmentIds).outputVariable(); } /** * Segment max operation.
* * If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
* * @param name name May be null. Name for the output variable * @param data Data to perform segment max on (NDARRAY type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @return output Segment output (NUMERIC type) */ public SDVariable segmentMax(String name, SDVariable data, SDVariable segmentIds) { SDValidation.validateNumerical("segmentMax", "segmentIds", segmentIds); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentMax(sd,data, segmentIds).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Segment mean operation.
* * If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
* * @param data Data to perform segment max on (NDARRAY type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @return output Segment output (NUMERIC type) */ public SDVariable segmentMean(SDVariable data, SDVariable segmentIds) { SDValidation.validateNumerical("segmentMean", "segmentIds", segmentIds); return new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentMean(sd,data, segmentIds).outputVariable(); } /** * Segment mean operation.
* * If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
* * @param name name May be null. Name for the output variable * @param data Data to perform segment max on (NDARRAY type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @return output Segment output (NUMERIC type) */ public SDVariable segmentMean(String name, SDVariable data, SDVariable segmentIds) { SDValidation.validateNumerical("segmentMean", "segmentIds", segmentIds); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentMean(sd,data, segmentIds).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Segment min operation.
* * If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
* * @param data Data to perform segment max on (NDARRAY type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @return output Segment output (NUMERIC type) */ public SDVariable segmentMin(SDVariable data, SDVariable segmentIds) { SDValidation.validateNumerical("segmentMin", "segmentIds", segmentIds); return new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentMin(sd,data, segmentIds).outputVariable(); } /** * Segment min operation.
* * If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
* * @param name name May be null. Name for the output variable * @param data Data to perform segment max on (NDARRAY type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @return output Segment output (NUMERIC type) */ public SDVariable segmentMin(String name, SDVariable data, SDVariable segmentIds) { SDValidation.validateNumerical("segmentMin", "segmentIds", segmentIds); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentMin(sd,data, segmentIds).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Segment product operation.
* * If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
* * @param data Data to perform segment max on (NDARRAY type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @return output Segment output (NUMERIC type) */ public SDVariable segmentProd(SDVariable data, SDVariable segmentIds) { SDValidation.validateNumerical("segmentProd", "segmentIds", segmentIds); return new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentProd(sd,data, segmentIds).outputVariable(); } /** * Segment product operation.
* * If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
* * @param name name May be null. Name for the output variable * @param data Data to perform segment max on (NDARRAY type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @return output Segment output (NUMERIC type) */ public SDVariable segmentProd(String name, SDVariable data, SDVariable segmentIds) { SDValidation.validateNumerical("segmentProd", "segmentIds", segmentIds); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentProd(sd,data, segmentIds).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Segment sum operation.
* * If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
* * @param data Data to perform segment max on (NDARRAY type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @return output Segment output (NUMERIC type) */ public SDVariable segmentSum(SDVariable data, SDVariable segmentIds) { SDValidation.validateNumerical("segmentSum", "segmentIds", segmentIds); return new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentSum(sd,data, segmentIds).outputVariable(); } /** * Segment sum operation.
* * If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
* * @param name name May be null. Name for the output variable * @param data Data to perform segment max on (NDARRAY type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @return output Segment output (NUMERIC type) */ public SDVariable segmentSum(String name, SDVariable data, SDVariable segmentIds) { SDValidation.validateNumerical("segmentSum", "segmentIds", segmentIds); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentSum(sd,data, segmentIds).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Generate a sequence mask (with values 0 or 1) based on the specified lengths
* Specifically, out[i, ..., k, j] = (j < lengths[i, ..., k] ? 1.0 : 0.0)
* * @param lengths Lengths of the sequences (NUMERIC type) * @param maxLen Maximum sequence length * @param dataType * @return output Output variable (NUMERIC type) */ public SDVariable sequenceMask(SDVariable lengths, int maxLen, DataType dataType) { SDValidation.validateNumerical("sequenceMask", "lengths", lengths); return new org.nd4j.linalg.api.ops.impl.shape.SequenceMask(sd,lengths, maxLen, dataType).outputVariable(); } /** * Generate a sequence mask (with values 0 or 1) based on the specified lengths
* Specifically, out[i, ..., k, j] = (j < lengths[i, ..., k] ? 1.0 : 0.0)
* * @param name name May be null. Name for the output variable * @param lengths Lengths of the sequences (NUMERIC type) * @param maxLen Maximum sequence length * @param dataType * @return output Output variable (NUMERIC type) */ public SDVariable sequenceMask(String name, SDVariable lengths, int maxLen, DataType dataType) { SDValidation.validateNumerical("sequenceMask", "lengths", lengths); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.SequenceMask(sd,lengths, maxLen, dataType).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Generate a sequence mask (with values 0 or 1) based on the specified lengths
* Specifically, out[i, ..., k, j] = (j < lengths[i, ..., k] ? 1.0 : 0.0)
* * @param lengths Lengths of the sequences (NUMERIC type) * @param maxLen Maximum sequence length (INT type) * @param dataType * @return output Output variable (NUMERIC type) */ public SDVariable sequenceMask(SDVariable lengths, SDVariable maxLen, DataType dataType) { SDValidation.validateNumerical("sequenceMask", "lengths", lengths); SDValidation.validateInteger("sequenceMask", "maxLen", maxLen); return new org.nd4j.linalg.api.ops.impl.shape.SequenceMask(sd,lengths, maxLen, dataType).outputVariable(); } /** * Generate a sequence mask (with values 0 or 1) based on the specified lengths
* Specifically, out[i, ..., k, j] = (j < lengths[i, ..., k] ? 1.0 : 0.0)
* * @param name name May be null. Name for the output variable * @param lengths Lengths of the sequences (NUMERIC type) * @param maxLen Maximum sequence length (INT type) * @param dataType * @return output Output variable (NUMERIC type) */ public SDVariable sequenceMask(String name, SDVariable lengths, SDVariable maxLen, DataType dataType) { SDValidation.validateNumerical("sequenceMask", "lengths", lengths); SDValidation.validateInteger("sequenceMask", "maxLen", maxLen); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.SequenceMask(sd,lengths, maxLen, dataType).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * see sequenceMask(String, SDVariable, SDVariable, DataType)
* * @param lengths (NUMERIC type) * @param dataType * @return output (NUMERIC type) */ public SDVariable sequenceMask(SDVariable lengths, DataType dataType) { SDValidation.validateNumerical("sequenceMask", "lengths", lengths); return new org.nd4j.linalg.api.ops.impl.shape.SequenceMask(sd,lengths, dataType).outputVariable(); } /** * see sequenceMask(String, SDVariable, SDVariable, DataType)
* * @param name name May be null. Name for the output variable * @param lengths (NUMERIC type) * @param dataType * @return output (NUMERIC type) */ public SDVariable sequenceMask(String name, SDVariable lengths, DataType dataType) { SDValidation.validateNumerical("sequenceMask", "lengths", lengths); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.SequenceMask(sd,lengths, dataType).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Returns the shape of the specified INDArray as a 1D INDArray
* * @param input Input variable (NUMERIC type) * @return output 1D output variable with contents equal to the shape of the input (NUMERIC type) */ public SDVariable shape(SDVariable input) { SDValidation.validateNumerical("shape", "input", input); return new org.nd4j.linalg.api.ops.impl.shape.Shape(sd,input).outputVariable(); } /** * Returns the shape of the specified INDArray as a 1D INDArray
* * @param name name May be null. Name for the output variable * @param input Input variable (NUMERIC type) * @return output 1D output variable with contents equal to the shape of the input (NUMERIC type) */ public SDVariable shape(String name, SDVariable input) { SDValidation.validateNumerical("shape", "input", input); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Shape(sd,input).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Returns the size (number of elements, i.e., prod(shape)) of the specified INDArray as a 0D scalar variable
* * @param in Input variable (NUMERIC type) * @return output 0D (scalar) output variable with value equal to the number of elements in the specified array (NUMERIC type) */ public SDVariable size(SDVariable in) { SDValidation.validateNumerical("size", "in", in); return new org.nd4j.linalg.api.ops.impl.shape.Size(sd,in).outputVariable(); } /** * Returns the size (number of elements, i.e., prod(shape)) of the specified INDArray as a 0D scalar variable
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @return output 0D (scalar) output variable with value equal to the number of elements in the specified array (NUMERIC type) */ public SDVariable size(String name, SDVariable in) { SDValidation.validateNumerical("size", "in", in); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Size(sd,in).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Returns a rank 0 (scalar) variable for the size of the specified dimension.
* For example, if X has shape [10,20,30] then sizeAt(X,1)=20. Similarly, sizeAt(X,-1)=30
* * @param in Input variable (NUMERIC type) * @param dimension Dimension to get size of * @return output Scalar INDArray for size at specified variable (NUMERIC type) */ public SDVariable sizeAt(SDVariable in, int dimension) { SDValidation.validateNumerical("sizeAt", "in", in); return new org.nd4j.linalg.api.ops.impl.shape.SizeAt(sd,in, dimension).outputVariable(); } /** * Returns a rank 0 (scalar) variable for the size of the specified dimension.
* For example, if X has shape [10,20,30] then sizeAt(X,1)=20. Similarly, sizeAt(X,-1)=30
* * @param name name May be null. Name for the output variable * @param in Input variable (NUMERIC type) * @param dimension Dimension to get size of * @return output Scalar INDArray for size at specified variable (NUMERIC type) */ public SDVariable sizeAt(String name, SDVariable in, int dimension) { SDValidation.validateNumerical("sizeAt", "in", in); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.SizeAt(sd,in, dimension).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Get a subset of the specified input, by specifying the first element and the size of the array.
* For example, if input is:
* [a, b, c]
* [d, e, f]
* then slice(input, begin=[0,1], size=[2,1] will return:
* [b]
* [e]
* Note that for each dimension i, begin[i] + size[i] <= input.size(i)
* * @param input input Variable to get subset of (NUMERIC type) * @param begin Beginning index. Must be same length as rank of input array (Size: AtLeast(min=1)) * @param size Size of the output array. Must be same length as rank of input array (Size: AtLeast(min=1)) * @return output Subset of the input (NUMERIC type) */ public SDVariable slice(SDVariable input, int[] begin, int... size) { SDValidation.validateNumerical("slice", "input", input); Preconditions.checkArgument(begin.length >= 1, "begin has incorrect size/length. Expected: begin.length >= 1, got %s", begin.length); Preconditions.checkArgument(size.length >= 1, "size has incorrect size/length. Expected: size.length >= 1, got %s", size.length); return new org.nd4j.linalg.api.ops.impl.shape.Slice(sd,input, begin, size).outputVariable(); } /** * Get a subset of the specified input, by specifying the first element and the size of the array.
* For example, if input is:
* [a, b, c]
* [d, e, f]
* then slice(input, begin=[0,1], size=[2,1] will return:
* [b]
* [e]
* Note that for each dimension i, begin[i] + size[i] <= input.size(i)
* * @param name name May be null. Name for the output variable * @param input input Variable to get subset of (NUMERIC type) * @param begin Beginning index. Must be same length as rank of input array (Size: AtLeast(min=1)) * @param size Size of the output array. Must be same length as rank of input array (Size: AtLeast(min=1)) * @return output Subset of the input (NUMERIC type) */ public SDVariable slice(String name, SDVariable input, int[] begin, int... size) { SDValidation.validateNumerical("slice", "input", input); Preconditions.checkArgument(begin.length >= 1, "begin has incorrect size/length. Expected: begin.length >= 1, got %s", begin.length); Preconditions.checkArgument(size.length >= 1, "size has incorrect size/length. Expected: size.length >= 1, got %s", size.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Slice(sd,input, begin, size).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Get a subset of the specified input, by specifying the first element and the size of the array.
* For example, if input is:
* [a, b, c]
* [d, e, f]
* then slice(input, begin=[0,1], size=[2,1] will return:
* [b]
* [e]
* Note that for each dimension i, begin[i] + size[i] <= input.size(i)
* * @param input input Variable to get subset of (NUMERIC type) * @param begin Beginning index. Must be same length as rank of input array (INT type) * @param size Size of the output array. Must be same length as rank of input array (INT type) * @return output Subset of the input (NUMERIC type) */ public SDVariable slice(SDVariable input, SDVariable begin, SDVariable size) { SDValidation.validateNumerical("slice", "input", input); SDValidation.validateInteger("slice", "begin", begin); SDValidation.validateInteger("slice", "size", size); return new org.nd4j.linalg.api.ops.impl.shape.Slice(sd,input, begin, size).outputVariable(); } /** * Get a subset of the specified input, by specifying the first element and the size of the array.
* For example, if input is:
* [a, b, c]
* [d, e, f]
* then slice(input, begin=[0,1], size=[2,1] will return:
* [b]
* [e]
* Note that for each dimension i, begin[i] + size[i] <= input.size(i)
* * @param name name May be null. Name for the output variable * @param input input Variable to get subset of (NUMERIC type) * @param begin Beginning index. Must be same length as rank of input array (INT type) * @param size Size of the output array. Must be same length as rank of input array (INT type) * @return output Subset of the input (NUMERIC type) */ public SDVariable slice(String name, SDVariable input, SDVariable begin, SDVariable size) { SDValidation.validateNumerical("slice", "input", input); SDValidation.validateInteger("slice", "begin", begin); SDValidation.validateInteger("slice", "size", size); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Slice(sd,input, begin, size).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Squared L2 norm: see norm2(String, SDVariable, boolean, int...)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x (NUMERIC type) * @param keepDims * @param dimensions (Size: AtLeast(min=0)) * @return output (NUMERIC type) */ public SDVariable squaredNorm(SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("squaredNorm", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.floating.SquaredNorm(sd,x, keepDims, dimensions).outputVariable(); } /** * Squared L2 norm: see norm2(String, SDVariable, boolean, int...)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x (NUMERIC type) * @param keepDims * @param dimensions (Size: AtLeast(min=0)) * @return output (NUMERIC type) */ public SDVariable squaredNorm(String name, SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("squaredNorm", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.floating.SquaredNorm(sd,x, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Squared L2 norm: see norm2(String, SDVariable, boolean, int...)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x (NUMERIC type) * @param dimensions (Size: AtLeast(min=0)) * @return output (NUMERIC type) */ public SDVariable squaredNorm(SDVariable x, int... dimensions) { SDValidation.validateNumerical("squaredNorm", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.floating.SquaredNorm(sd,x, false, dimensions).outputVariable(); } /** * Squared L2 norm: see norm2(String, SDVariable, boolean, int...)
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x (NUMERIC type) * @param dimensions (Size: AtLeast(min=0)) * @return output (NUMERIC type) */ public SDVariable squaredNorm(String name, SDVariable x, int... dimensions) { SDValidation.validateNumerical("squaredNorm", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.floating.SquaredNorm(sd,x, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Remove a single dimension of size 1.
* For example, if input has shape [a,b,1,c] then squeeze(input, 2) returns an array of shape [a,b,c]
* * @param x Input variable (NUMERIC type) * @param axis Size 1 dimension to remove * @return output Output variable (NUMERIC type) */ public SDVariable squeeze(SDVariable x, int axis) { SDValidation.validateNumerical("squeeze", "x", x); return new org.nd4j.linalg.api.ops.impl.shape.Squeeze(sd,x, axis).outputVariable(); } /** * Remove a single dimension of size 1.
* For example, if input has shape [a,b,1,c] then squeeze(input, 2) returns an array of shape [a,b,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param axis Size 1 dimension to remove * @return output Output variable (NUMERIC type) */ public SDVariable squeeze(String name, SDVariable x, int axis) { SDValidation.validateNumerical("squeeze", "x", x); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Squeeze(sd,x, axis).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Stack a set of N INDArray of rank X into one rank X+1 variable.
* If inputs have shape [a,b,c] then output has shape:
* axis = 0: [N,a,b,c]
* axis = 1: [a,N,b,c]
* axis = 2: [a,b,N,c]
* axis = 3: [a,b,c,N]
* see unstack(String[], SDVariable, int, int)
* * @param values Input variables to stack. Must have the same shape for all inputs (NDARRAY type) * @param axis Axis to stack on * @return output Output variable (NDARRAY type) */ public SDVariable stack(int axis, SDVariable... values) { Preconditions.checkArgument(values.length >= 1, "values has incorrect size/length. Expected: values.length >= 1, got %s", values.length); return new org.nd4j.linalg.api.ops.impl.shape.Stack(sd,values, axis).outputVariable(); } /** * Stack a set of N INDArray of rank X into one rank X+1 variable.
* If inputs have shape [a,b,c] then output has shape:
* axis = 0: [N,a,b,c]
* axis = 1: [a,N,b,c]
* axis = 2: [a,b,N,c]
* axis = 3: [a,b,c,N]
* see unstack(String[], SDVariable, int, int)
* * @param name name May be null. Name for the output variable * @param axis Axis to stack on * @param values Input variables to stack. Must have the same shape for all inputs (NDARRAY type) * @return output Output variable (NDARRAY type) */ public SDVariable stack(String name, int axis, SDVariable... values) { Preconditions.checkArgument(values.length >= 1, "values has incorrect size/length. Expected: values.length >= 1, got %s", values.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Stack(sd,values, axis).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Stardard deviation array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param biasCorrected If true: divide by (N-1) (i.e., sample stdev). If false: divide by N (population stdev) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable standardDeviation(SDVariable x, boolean biasCorrected, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("standardDeviation", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.summarystats.StandardDeviation(sd,x, biasCorrected, keepDims, dimensions).outputVariable(); } /** * Stardard deviation array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param biasCorrected If true: divide by (N-1) (i.e., sample stdev). If false: divide by N (population stdev) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable standardDeviation(String name, SDVariable x, boolean biasCorrected, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("standardDeviation", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.summarystats.StandardDeviation(sd,x, biasCorrected, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Stardard deviation array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param biasCorrected If true: divide by (N-1) (i.e., sample stdev). If false: divide by N (population stdev) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable standardDeviation(SDVariable x, boolean biasCorrected, int... dimensions) { SDValidation.validateNumerical("standardDeviation", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.summarystats.StandardDeviation(sd,x, biasCorrected, false, dimensions).outputVariable(); } /** * Stardard deviation array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param biasCorrected If true: divide by (N-1) (i.e., sample stdev). If false: divide by N (population stdev) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable standardDeviation(String name, SDVariable x, boolean biasCorrected, int... dimensions) { SDValidation.validateNumerical("standardDeviation", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.summarystats.StandardDeviation(sd,x, biasCorrected, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Get a subset of the specified input, by specifying the first element, last element, and the strides.
* For example, if input is:
* [a, b, c]
* [d, e, f]
* [g, h, i]
* then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
* [b, c]
* [h, i]
* * @param in Variable to get subset of (NUMERIC type) * @param begin Beginning index (Size: AtLeast(min=1)) * @param end End index (Size: AtLeast(min=1)) * @param strides Stride ("step size") for each dimension. For example, stride of 2 means take every second element. (Size: AtLeast(min=1)) * @param beginMask Bit mask: If the ith bit is set to 1, then the value in the begin long[] is ignored, and a value of 0 is used instead for the beginning index for that dimension * @param endMask Bit mask: If the ith bit is set to 1, then the value in the end long[] is ignored, and a value of size(i)-1 is used instead for the end index for that dimension * @param ellipsisMask Bit mask: only one non-zero value is allowed here. If a non-zero value is set, then other dimensions are inserted as required at the specified position * @param newAxisMask Bit mask: if the ith bit is set to 1, then the begin/end/stride values are ignored, and a size 1 dimension is inserted at this point * @param shrinkAxisMask Bit mask: if the ith bit is set to 1, then the begin/end/stride values are ignored, and a size 1 dimension is removed at this point. Note that begin/end/stride values must result in a size 1 output for these dimensions * @return output A subset of the input array (NUMERIC type) */ public SDVariable stridedSlice(SDVariable in, long[] begin, long[] end, long[] strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask) { SDValidation.validateNumerical("stridedSlice", "in", in); Preconditions.checkArgument(begin.length >= 1, "begin has incorrect size/length. Expected: begin.length >= 1, got %s", begin.length); Preconditions.checkArgument(end.length >= 1, "end has incorrect size/length. Expected: end.length >= 1, got %s", end.length); Preconditions.checkArgument(strides.length >= 1, "strides has incorrect size/length. Expected: strides.length >= 1, got %s", strides.length); return new org.nd4j.linalg.api.ops.impl.shape.StridedSlice(sd,in, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask).outputVariable(); } /** * Get a subset of the specified input, by specifying the first element, last element, and the strides.
* For example, if input is:
* [a, b, c]
* [d, e, f]
* [g, h, i]
* then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
* [b, c]
* [h, i]
* * @param name name May be null. Name for the output variable * @param in Variable to get subset of (NUMERIC type) * @param begin Beginning index (Size: AtLeast(min=1)) * @param end End index (Size: AtLeast(min=1)) * @param strides Stride ("step size") for each dimension. For example, stride of 2 means take every second element. (Size: AtLeast(min=1)) * @param beginMask Bit mask: If the ith bit is set to 1, then the value in the begin long[] is ignored, and a value of 0 is used instead for the beginning index for that dimension * @param endMask Bit mask: If the ith bit is set to 1, then the value in the end long[] is ignored, and a value of size(i)-1 is used instead for the end index for that dimension * @param ellipsisMask Bit mask: only one non-zero value is allowed here. If a non-zero value is set, then other dimensions are inserted as required at the specified position * @param newAxisMask Bit mask: if the ith bit is set to 1, then the begin/end/stride values are ignored, and a size 1 dimension is inserted at this point * @param shrinkAxisMask Bit mask: if the ith bit is set to 1, then the begin/end/stride values are ignored, and a size 1 dimension is removed at this point. Note that begin/end/stride values must result in a size 1 output for these dimensions * @return output A subset of the input array (NUMERIC type) */ public SDVariable stridedSlice(String name, SDVariable in, long[] begin, long[] end, long[] strides, int beginMask, int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask) { SDValidation.validateNumerical("stridedSlice", "in", in); Preconditions.checkArgument(begin.length >= 1, "begin has incorrect size/length. Expected: begin.length >= 1, got %s", begin.length); Preconditions.checkArgument(end.length >= 1, "end has incorrect size/length. Expected: end.length >= 1, got %s", end.length); Preconditions.checkArgument(strides.length >= 1, "strides has incorrect size/length. Expected: strides.length >= 1, got %s", strides.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.StridedSlice(sd,in, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Get a subset of the specified input, by specifying the first element, last element, and the strides.
* For example, if input is:
* [a, b, c]
* [d, e, f]
* [g, h, i]
* then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
* [b, c]
* [h, i]
* * @param in Variable to get subset of (NUMERIC type) * @param begin Beginning index (Size: AtLeast(min=1)) * @param end End index (Size: AtLeast(min=1)) * @param strides Stride ("step size") for each dimension. For example, stride of 2 means take every second element. (Size: AtLeast(min=1)) * @return output A subset of the input array (NUMERIC type) */ public SDVariable stridedSlice(SDVariable in, long[] begin, long[] end, long... strides) { SDValidation.validateNumerical("stridedSlice", "in", in); Preconditions.checkArgument(begin.length >= 1, "begin has incorrect size/length. Expected: begin.length >= 1, got %s", begin.length); Preconditions.checkArgument(end.length >= 1, "end has incorrect size/length. Expected: end.length >= 1, got %s", end.length); Preconditions.checkArgument(strides.length >= 1, "strides has incorrect size/length. Expected: strides.length >= 1, got %s", strides.length); return new org.nd4j.linalg.api.ops.impl.shape.StridedSlice(sd,in, begin, end, strides, 0, 0, 0, 0, 0).outputVariable(); } /** * Get a subset of the specified input, by specifying the first element, last element, and the strides.
* For example, if input is:
* [a, b, c]
* [d, e, f]
* [g, h, i]
* then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
* [b, c]
* [h, i]
* * @param name name May be null. Name for the output variable * @param in Variable to get subset of (NUMERIC type) * @param begin Beginning index (Size: AtLeast(min=1)) * @param end End index (Size: AtLeast(min=1)) * @param strides Stride ("step size") for each dimension. For example, stride of 2 means take every second element. (Size: AtLeast(min=1)) * @return output A subset of the input array (NUMERIC type) */ public SDVariable stridedSlice(String name, SDVariable in, long[] begin, long[] end, long... strides) { SDValidation.validateNumerical("stridedSlice", "in", in); Preconditions.checkArgument(begin.length >= 1, "begin has incorrect size/length. Expected: begin.length >= 1, got %s", begin.length); Preconditions.checkArgument(end.length >= 1, "end has incorrect size/length. Expected: end.length >= 1, got %s", end.length); Preconditions.checkArgument(strides.length >= 1, "strides has incorrect size/length. Expected: strides.length >= 1, got %s", strides.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.StridedSlice(sd,in, begin, end, strides, 0, 0, 0, 0, 0).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Sum array reduction operation, optionally along specified dimensions.
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as length 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or of rank (input rank) if keepdims = true (NUMERIC type) */ public SDVariable sum(SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("sum", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.same.Sum(sd,x, keepDims, dimensions).outputVariable(); } /** * Sum array reduction operation, optionally along specified dimensions.
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param keepDims If true: keep the dimensions that are reduced on (as length 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or of rank (input rank) if keepdims = true (NUMERIC type) */ public SDVariable sum(String name, SDVariable x, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("sum", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.same.Sum(sd,x, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Sum array reduction operation, optionally along specified dimensions.
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or of rank (input rank) if keepdims = true (NUMERIC type) */ public SDVariable sum(SDVariable x, int... dimensions) { SDValidation.validateNumerical("sum", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.reduce.same.Sum(sd,x, false, dimensions).outputVariable(); } /** * Sum array reduction operation, optionally along specified dimensions.
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or of rank (input rank) if keepdims = true (NUMERIC type) */ public SDVariable sum(String name, SDVariable x, int... dimensions) { SDValidation.validateNumerical("sum", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.same.Sum(sd,x, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Switch operation
* Predictate - if false, values are output to left (first) branch/output; if true, to right (second) branch/output
* * @param x Input variable (NDARRAY type) * @param predicate Predictate - if false, values are output to left (first) branch/output; if true, to right (second) branch/output (BOOL type) */ public SDVariable[] switchOp(SDVariable x, SDVariable predicate) { SDValidation.validateBool("switchOp", "predicate", predicate); return new org.nd4j.linalg.api.ops.impl.controlflow.compat.Switch(sd,x, predicate).outputVariables(); } /** * Switch operation
* Predictate - if false, values are output to left (first) branch/output; if true, to right (second) branch/output
* * @param names names May be null. Arrays of names for the output variables. * @param x Input variable (NDARRAY type) * @param predicate Predictate - if false, values are output to left (first) branch/output; if true, to right (second) branch/output (BOOL type) */ public SDVariable[] switchOp(String[] names, SDVariable x, SDVariable predicate) { SDValidation.validateBool("switchOp", "predicate", predicate); SDVariable[] out = new org.nd4j.linalg.api.ops.impl.controlflow.compat.Switch(sd,x, predicate).outputVariables(); return sd.updateVariableNamesAndReferences(out, names); } /** * //TODO: Ops must be documented.
* * @param x Input variable x (NUMERIC type) * @param y Input variable y (NUMERIC type) * @param dimensionsX dimensions for first input array (x) (Size: AtLeast(min=1)) * @param dimensionsY dimensions for second input array (y) (Size: AtLeast(min=1)) * @param transposeX Transpose x (first argument) * @param transposeY Transpose y (second argument) * @param transposeZ Transpose result array * @return output Output variable (NUMERIC type) */ public SDVariable tensorMmul(SDVariable x, SDVariable y, int[] dimensionsX, int[] dimensionsY, boolean transposeX, boolean transposeY, boolean transposeZ) { SDValidation.validateNumerical("tensorMmul", "x", x); SDValidation.validateNumerical("tensorMmul", "y", y); Preconditions.checkArgument(dimensionsX.length >= 1, "dimensionsX has incorrect size/length. Expected: dimensionsX.length >= 1, got %s", dimensionsX.length); Preconditions.checkArgument(dimensionsY.length >= 1, "dimensionsY has incorrect size/length. Expected: dimensionsY.length >= 1, got %s", dimensionsY.length); return new org.nd4j.linalg.api.ops.impl.reduce.TensorMmul(sd,x, y, dimensionsX, dimensionsY, transposeX, transposeY, transposeZ).outputVariable(); } /** * //TODO: Ops must be documented.
* * @param name name May be null. Name for the output variable * @param x Input variable x (NUMERIC type) * @param y Input variable y (NUMERIC type) * @param dimensionsX dimensions for first input array (x) (Size: AtLeast(min=1)) * @param dimensionsY dimensions for second input array (y) (Size: AtLeast(min=1)) * @param transposeX Transpose x (first argument) * @param transposeY Transpose y (second argument) * @param transposeZ Transpose result array * @return output Output variable (NUMERIC type) */ public SDVariable tensorMmul(String name, SDVariable x, SDVariable y, int[] dimensionsX, int[] dimensionsY, boolean transposeX, boolean transposeY, boolean transposeZ) { SDValidation.validateNumerical("tensorMmul", "x", x); SDValidation.validateNumerical("tensorMmul", "y", y); Preconditions.checkArgument(dimensionsX.length >= 1, "dimensionsX has incorrect size/length. Expected: dimensionsX.length >= 1, got %s", dimensionsX.length); Preconditions.checkArgument(dimensionsY.length >= 1, "dimensionsY has incorrect size/length. Expected: dimensionsY.length >= 1, got %s", dimensionsY.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.TensorMmul(sd,x, y, dimensionsX, dimensionsY, transposeX, transposeY, transposeZ).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * //TODO: Ops must be documented.
* * @param x Input variable x (NUMERIC type) * @param y Input variable y (NUMERIC type) * @param dimensionsX dimensions for first input array (x) (Size: AtLeast(min=1)) * @param dimensionsY dimensions for second input array (y) (Size: AtLeast(min=1)) * @return output Output variable (NUMERIC type) */ public SDVariable tensorMmul(SDVariable x, SDVariable y, int[] dimensionsX, int... dimensionsY) { SDValidation.validateNumerical("tensorMmul", "x", x); SDValidation.validateNumerical("tensorMmul", "y", y); Preconditions.checkArgument(dimensionsX.length >= 1, "dimensionsX has incorrect size/length. Expected: dimensionsX.length >= 1, got %s", dimensionsX.length); Preconditions.checkArgument(dimensionsY.length >= 1, "dimensionsY has incorrect size/length. Expected: dimensionsY.length >= 1, got %s", dimensionsY.length); return new org.nd4j.linalg.api.ops.impl.reduce.TensorMmul(sd,x, y, dimensionsX, dimensionsY, false, false, false).outputVariable(); } /** * //TODO: Ops must be documented.
* * @param name name May be null. Name for the output variable * @param x Input variable x (NUMERIC type) * @param y Input variable y (NUMERIC type) * @param dimensionsX dimensions for first input array (x) (Size: AtLeast(min=1)) * @param dimensionsY dimensions for second input array (y) (Size: AtLeast(min=1)) * @return output Output variable (NUMERIC type) */ public SDVariable tensorMmul(String name, SDVariable x, SDVariable y, int[] dimensionsX, int... dimensionsY) { SDValidation.validateNumerical("tensorMmul", "x", x); SDValidation.validateNumerical("tensorMmul", "y", y); Preconditions.checkArgument(dimensionsX.length >= 1, "dimensionsX has incorrect size/length. Expected: dimensionsX.length >= 1, got %s", dimensionsX.length); Preconditions.checkArgument(dimensionsY.length >= 1, "dimensionsY has incorrect size/length. Expected: dimensionsY.length >= 1, got %s", dimensionsY.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.reduce.TensorMmul(sd,x, y, dimensionsX, dimensionsY, false, false, false).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Repeat (tile) the input tensor the specified number of times.
* For example, if input is
* [1, 2]
* [3, 4]
* and repeat is [2, 3]
* then output is
* [1, 2, 1, 2, 1, 2]
* [3, 4, 3, 4, 3, 4]
* [1, 2, 1, 2, 1, 2]
* [3, 4, 3, 4, 3, 4]
* * @param x Input variable (NDARRAY type) * @param repeat Number of times to repeat in each axis. Must have length equal to the rank of the input array (INT type) * @return output Output variable (NDARRAY type) */ public SDVariable tile(SDVariable x, SDVariable repeat) { SDValidation.validateInteger("tile", "repeat", repeat); return new org.nd4j.linalg.api.ops.impl.shape.Tile(sd,x, repeat).outputVariable(); } /** * Repeat (tile) the input tensor the specified number of times.
* For example, if input is
* [1, 2]
* [3, 4]
* and repeat is [2, 3]
* then output is
* [1, 2, 1, 2, 1, 2]
* [3, 4, 3, 4, 3, 4]
* [1, 2, 1, 2, 1, 2]
* [3, 4, 3, 4, 3, 4]
* * @param name name May be null. Name for the output variable * @param x Input variable (NDARRAY type) * @param repeat Number of times to repeat in each axis. Must have length equal to the rank of the input array (INT type) * @return output Output variable (NDARRAY type) */ public SDVariable tile(String name, SDVariable x, SDVariable repeat) { SDValidation.validateInteger("tile", "repeat", repeat); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Tile(sd,x, repeat).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * see tile(String, SDVariable, int...)
* * @param x (NDARRAY type) * @param repeat (Size: AtLeast(min=1)) * @return output (NDARRAY type) */ public SDVariable tile(SDVariable x, int... repeat) { Preconditions.checkArgument(repeat.length >= 1, "repeat has incorrect size/length. Expected: repeat.length >= 1, got %s", repeat.length); return new org.nd4j.linalg.api.ops.impl.shape.Tile(sd,x, repeat).outputVariable(); } /** * see tile(String, SDVariable, int...)
* * @param name name May be null. Name for the output variable * @param x (NDARRAY type) * @param repeat (Size: AtLeast(min=1)) * @return output (NDARRAY type) */ public SDVariable tile(String name, SDVariable x, int... repeat) { Preconditions.checkArgument(repeat.length >= 1, "repeat has incorrect size/length. Expected: repeat.length >= 1, got %s", repeat.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Tile(sd,x, repeat).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Matrix transpose operation: If input has shape [a,b] output has shape [b,a]
* * @param x Input variable (NDARRAY type) * @return output transposed input (NDARRAY type) */ public SDVariable transpose(SDVariable x) { return new org.nd4j.linalg.api.ops.impl.shape.Transpose(sd,x).outputVariable(); } /** * Matrix transpose operation: If input has shape [a,b] output has shape [b,a]
* * @param name name May be null. Name for the output variable * @param x Input variable (NDARRAY type) * @return output transposed input (NDARRAY type) */ public SDVariable transpose(String name, SDVariable x) { SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.Transpose(sd,x).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Unsorted segment max operation. As per segmentMax(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [6, 9, 8] = [max(3,6), max(1,4,9), max(2,8)]
* * @param data Data (variable) to perform unsorted segment max on (NUMERIC type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @param numSegments Number of segments * @return output Unsorted segment output (NUMERIC type) */ public SDVariable unsortedSegmentMax(SDVariable data, SDVariable segmentIds, int numSegments) { SDValidation.validateNumerical("unsortedSegmentMax", "data", data); SDValidation.validateNumerical("unsortedSegmentMax", "segmentIds", segmentIds); return new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentMax(sd,data, segmentIds, numSegments).outputVariable(); } /** * Unsorted segment max operation. As per segmentMax(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [6, 9, 8] = [max(3,6), max(1,4,9), max(2,8)]
* * @param name name May be null. Name for the output variable * @param data Data (variable) to perform unsorted segment max on (NUMERIC type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @param numSegments Number of segments * @return output Unsorted segment output (NUMERIC type) */ public SDVariable unsortedSegmentMax(String name, SDVariable data, SDVariable segmentIds, int numSegments) { SDValidation.validateNumerical("unsortedSegmentMax", "data", data); SDValidation.validateNumerical("unsortedSegmentMax", "segmentIds", segmentIds); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentMax(sd,data, segmentIds, numSegments).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Unsorted segment mean operation. As per segmentMean(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [4.5, 4.666, 5] = [mean(3,6), mean(1,4,9), mean(2,8)]
* * @param data Data (variable) to perform unsorted segment max on (NUMERIC type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @param numSegments Number of segments * @return output Unsorted segment output (NUMERIC type) */ public SDVariable unsortedSegmentMean(SDVariable data, SDVariable segmentIds, int numSegments) { SDValidation.validateNumerical("unsortedSegmentMean", "data", data); SDValidation.validateNumerical("unsortedSegmentMean", "segmentIds", segmentIds); return new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentMean(sd,data, segmentIds, numSegments).outputVariable(); } /** * Unsorted segment mean operation. As per segmentMean(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [4.5, 4.666, 5] = [mean(3,6), mean(1,4,9), mean(2,8)]
* * @param name name May be null. Name for the output variable * @param data Data (variable) to perform unsorted segment max on (NUMERIC type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @param numSegments Number of segments * @return output Unsorted segment output (NUMERIC type) */ public SDVariable unsortedSegmentMean(String name, SDVariable data, SDVariable segmentIds, int numSegments) { SDValidation.validateNumerical("unsortedSegmentMean", "data", data); SDValidation.validateNumerical("unsortedSegmentMean", "segmentIds", segmentIds); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentMean(sd,data, segmentIds, numSegments).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Unsorted segment min operation. As per segmentMin(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [3, 1, 2] = [min(3,6), min(1,4,9), min(2,8)]
* * @param data Data (variable) to perform unsorted segment max on (NUMERIC type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @param numSegments Number of segments * @return output Unsorted segment output (NUMERIC type) */ public SDVariable unsortedSegmentMin(SDVariable data, SDVariable segmentIds, int numSegments) { SDValidation.validateNumerical("unsortedSegmentMin", "data", data); SDValidation.validateNumerical("unsortedSegmentMin", "segmentIds", segmentIds); return new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentMin(sd,data, segmentIds, numSegments).outputVariable(); } /** * Unsorted segment min operation. As per segmentMin(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [3, 1, 2] = [min(3,6), min(1,4,9), min(2,8)]
* * @param name name May be null. Name for the output variable * @param data Data (variable) to perform unsorted segment max on (NUMERIC type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @param numSegments Number of segments * @return output Unsorted segment output (NUMERIC type) */ public SDVariable unsortedSegmentMin(String name, SDVariable data, SDVariable segmentIds, int numSegments) { SDValidation.validateNumerical("unsortedSegmentMin", "data", data); SDValidation.validateNumerical("unsortedSegmentMin", "segmentIds", segmentIds); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentMin(sd,data, segmentIds, numSegments).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Unsorted segment product operation. As per segmentProd(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [4.5, 4.666, 5] = [mean(3,6), mean(1,4,9), mean(2,8)]
* * @param data Data (variable) to perform unsorted segment max on (NUMERIC type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @param numSegments Number of segments * @return output Unsorted segment output (NUMERIC type) */ public SDVariable unsortedSegmentProd(SDVariable data, SDVariable segmentIds, int numSegments) { SDValidation.validateNumerical("unsortedSegmentProd", "data", data); SDValidation.validateNumerical("unsortedSegmentProd", "segmentIds", segmentIds); return new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentProd(sd,data, segmentIds, numSegments).outputVariable(); } /** * Unsorted segment product operation. As per segmentProd(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [4.5, 4.666, 5] = [mean(3,6), mean(1,4,9), mean(2,8)]
* * @param name name May be null. Name for the output variable * @param data Data (variable) to perform unsorted segment max on (NUMERIC type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @param numSegments Number of segments * @return output Unsorted segment output (NUMERIC type) */ public SDVariable unsortedSegmentProd(String name, SDVariable data, SDVariable segmentIds, int numSegments) { SDValidation.validateNumerical("unsortedSegmentProd", "data", data); SDValidation.validateNumerical("unsortedSegmentProd", "segmentIds", segmentIds); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentProd(sd,data, segmentIds, numSegments).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Unsorted segment sqrtN operation. Simply returns the sqrt of the count of the number of values in each segment
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [1.414, 1.732, 1.414] = [sqrt(2), sqrtN(3), sqrtN(2)]
* * @param data Data (variable) to perform unsorted segment max on (NUMERIC type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @param numSegments Number of segments * @return output Unsorted segment output (NUMERIC type) */ public SDVariable unsortedSegmentSqrtN(SDVariable data, SDVariable segmentIds, int numSegments) { SDValidation.validateNumerical("unsortedSegmentSqrtN", "data", data); SDValidation.validateNumerical("unsortedSegmentSqrtN", "segmentIds", segmentIds); return new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentSqrtN(sd,data, segmentIds, numSegments).outputVariable(); } /** * Unsorted segment sqrtN operation. Simply returns the sqrt of the count of the number of values in each segment
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [1.414, 1.732, 1.414] = [sqrt(2), sqrtN(3), sqrtN(2)]
* * @param name name May be null. Name for the output variable * @param data Data (variable) to perform unsorted segment max on (NUMERIC type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @param numSegments Number of segments * @return output Unsorted segment output (NUMERIC type) */ public SDVariable unsortedSegmentSqrtN(String name, SDVariable data, SDVariable segmentIds, int numSegments) { SDValidation.validateNumerical("unsortedSegmentSqrtN", "data", data); SDValidation.validateNumerical("unsortedSegmentSqrtN", "segmentIds", segmentIds); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentSqrtN(sd,data, segmentIds, numSegments).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Unsorted segment sum operation. As per segmentSum(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [9, 14, 10] = [sum(3,6), sum(1,4,9), sum(2,8)]
* * @param data Data (variable) to perform unsorted segment max on (NUMERIC type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @param numSegments Number of segments * @return output Unsorted segment output (NUMERIC type) */ public SDVariable unsortedSegmentSum(SDVariable data, SDVariable segmentIds, int numSegments) { SDValidation.validateNumerical("unsortedSegmentSum", "data", data); SDValidation.validateNumerical("unsortedSegmentSum", "segmentIds", segmentIds); return new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentSum(sd,data, segmentIds, numSegments).outputVariable(); } /** * Unsorted segment sum operation. As per segmentSum(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [9, 14, 10] = [sum(3,6), sum(1,4,9), sum(2,8)]
* * @param name name May be null. Name for the output variable * @param data Data (variable) to perform unsorted segment max on (NUMERIC type) * @param segmentIds Variable for the segment IDs (NUMERIC type) * @param numSegments Number of segments * @return output Unsorted segment output (NUMERIC type) */ public SDVariable unsortedSegmentSum(String name, SDVariable data, SDVariable segmentIds, int numSegments) { SDValidation.validateNumerical("unsortedSegmentSum", "data", data); SDValidation.validateNumerical("unsortedSegmentSum", "segmentIds", segmentIds); SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentSum(sd,data, segmentIds, numSegments).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Unstack a variable of rank X into N rank X-1 variables by taking slices along the specified axis.
* If input has shape [a,b,c] then output has shape:
* axis = 0: [b,c]
* axis = 1: [a,c]
* axis = 2: [a,b]
* * @param value Input variable to unstack (NDARRAY type) * @param axis Axis to unstack on * @param num Number of output variables */ public SDVariable[] unstack(SDVariable value, int axis, int num) { return new org.nd4j.linalg.api.ops.impl.shape.Unstack(sd,value, axis, num).outputVariables(); } /** * Unstack a variable of rank X into N rank X-1 variables by taking slices along the specified axis.
* If input has shape [a,b,c] then output has shape:
* axis = 0: [b,c]
* axis = 1: [a,c]
* axis = 2: [a,b]
* * @param names names May be null. Arrays of names for the output variables. * @param value Input variable to unstack (NDARRAY type) * @param axis Axis to unstack on * @param num Number of output variables */ public SDVariable[] unstack(String[] names, SDVariable value, int axis, int num) { SDVariable[] out = new org.nd4j.linalg.api.ops.impl.shape.Unstack(sd,value, axis, num).outputVariables(); return sd.updateVariableNamesAndReferences(out, names); } /** * Variance array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param biasCorrected If true: divide by (N-1) (i.e., sample variable). If false: divide by N (population variance) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable variance(SDVariable x, boolean biasCorrected, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("variance", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.summarystats.Variance(sd,x, biasCorrected, keepDims, dimensions).outputVariable(); } /** * Variance array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param biasCorrected If true: divide by (N-1) (i.e., sample variable). If false: divide by N (population variance) * @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable variance(String name, SDVariable x, boolean biasCorrected, boolean keepDims, int... dimensions) { SDValidation.validateNumerical("variance", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.summarystats.Variance(sd,x, biasCorrected, keepDims, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Variance array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param x Input variable (NUMERIC type) * @param biasCorrected If true: divide by (N-1) (i.e., sample variable). If false: divide by N (population variance) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable variance(SDVariable x, boolean biasCorrected, int... dimensions) { SDValidation.validateNumerical("variance", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); return new org.nd4j.linalg.api.ops.impl.summarystats.Variance(sd,x, biasCorrected, false, dimensions).outputVariable(); } /** * Variance array reduction operation, optionally along specified dimensions
* * Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
* * @param name name May be null. Name for the output variable * @param x Input variable (NUMERIC type) * @param biasCorrected If true: divide by (N-1) (i.e., sample variable). If false: divide by N (population variance) * @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0)) * @return output reduced array of rank (input rank - num dimensions) (NUMERIC type) */ public SDVariable variance(String name, SDVariable x, boolean biasCorrected, int... dimensions) { SDValidation.validateNumerical("variance", "x", x); Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length); SDVariable out = new org.nd4j.linalg.api.ops.impl.summarystats.Variance(sd,x, biasCorrected, false, dimensions).outputVariable(); return sd.updateVariableNameAndReference(out, name); } /** * Return a variable of all 0s, with the same shape as the input variable. Note that this is dynamic:
* if the input shape changes in later execution, the returned variable's shape will also be updated
* * @param input Input (NUMERIC type) * @return output A new Variable with the same (dynamic) shape as the input (NUMERIC type) */ public SDVariable zerosLike(SDVariable input) { SDValidation.validateNumerical("zerosLike", "input", input); return new org.nd4j.linalg.api.ops.impl.shape.ZerosLike(sd,input).outputVariable(); } /** * Return a variable of all 0s, with the same shape as the input variable. Note that this is dynamic:
* if the input shape changes in later execution, the returned variable's shape will also be updated
* * @param name name May be null. Name for the output variable * @param input Input (NUMERIC type) * @return output A new Variable with the same (dynamic) shape as the input (NUMERIC type) */ public SDVariable zerosLike(String name, SDVariable input) { SDValidation.validateNumerical("zerosLike", "input", input); SDVariable out = new org.nd4j.linalg.api.ops.impl.shape.ZerosLike(sd,input).outputVariable(); return sd.updateVariableNameAndReference(out, name); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy