org.nd4j.autodiff.samediff.ops.SDNN Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2019-2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//================== GENERATED CODE - DO NOT MODIFY THIS FILE ==================
package org.nd4j.autodiff.samediff.ops;
import static org.nd4j.autodiff.samediff.ops.SDValidation.isSameType;
import java.lang.String;
import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.common.base.Preconditions;
import org.nd4j.enums.PadMode;
public class SDNN extends SDOps {
public SDNN(SameDiff sameDiff) {
super(sameDiff);
}
/**
* Concatenates a ReLU which selects only the positive part of the activation with a ReLU which selects only the negative part of the activation. Note that as a result this non-linearity doubles the depth of the activations.
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable cReLU(SDVariable x) {
SDValidation.validateNumerical("CReLU", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.custom.CReLU(sd,x).outputVariable();
}
/**
* Concatenates a ReLU which selects only the positive part of the activation with a ReLU which selects only the negative part of the activation. Note that as a result this non-linearity doubles the depth of the activations.
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable cReLU(String name, SDVariable x) {
SDValidation.validateNumerical("CReLU", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.CReLU(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Neural network batch normalization operation.
* For details, see https://arxiv.org/abs/1502.03167
*
* @param input Input variable. (NUMERIC type)
* @param mean Mean value. For 1d axis, this should match input.size(axis) (NUMERIC type)
* @param variance Variance value. For 1d axis, this should match input.size(axis) (NUMERIC type)
* @param gamma Gamma value. For 1d axis, this should match input.size(axis) (NUMERIC type)
* @param beta Beta value. For 1d axis, this should match input.size(axis) (NUMERIC type)
* @param epsilon Epsilon constant for numerical stability (to avoid division by 0)
* @param axis For 2d CNN activations: 1 for NCHW format activations, or 3 for NHWC format activations.
* For 3d CNN activations: 1 for NCDHW format, 4 for NDHWC
* For 1d/RNN activations: 1 for NCW format, 2 for NWC (Size: AtLeast(min=1))
* @return output variable for batch normalization (NUMERIC type)
*/
public SDVariable batchNorm(SDVariable input, SDVariable mean, SDVariable variance,
SDVariable gamma, SDVariable beta, double epsilon, int... axis) {
SDValidation.validateNumerical("batchNorm", "input", input);
SDValidation.validateNumerical("batchNorm", "mean", mean);
SDValidation.validateNumerical("batchNorm", "variance", variance);
SDValidation.validateNumerical("batchNorm", "gamma", gamma);
SDValidation.validateNumerical("batchNorm", "beta", beta);
Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length);
return new org.nd4j.linalg.api.ops.impl.layers.convolution.BatchNorm(sd,input, mean, variance, gamma, beta, epsilon, axis).outputVariable();
}
/**
* Neural network batch normalization operation.
* For details, see https://arxiv.org/abs/1502.03167
*
* @param name name May be null. Name for the output variable
* @param input Input variable. (NUMERIC type)
* @param mean Mean value. For 1d axis, this should match input.size(axis) (NUMERIC type)
* @param variance Variance value. For 1d axis, this should match input.size(axis) (NUMERIC type)
* @param gamma Gamma value. For 1d axis, this should match input.size(axis) (NUMERIC type)
* @param beta Beta value. For 1d axis, this should match input.size(axis) (NUMERIC type)
* @param epsilon Epsilon constant for numerical stability (to avoid division by 0)
* @param axis For 2d CNN activations: 1 for NCHW format activations, or 3 for NHWC format activations.
* For 3d CNN activations: 1 for NCDHW format, 4 for NDHWC
* For 1d/RNN activations: 1 for NCW format, 2 for NWC (Size: AtLeast(min=1))
* @return output variable for batch normalization (NUMERIC type)
*/
public SDVariable batchNorm(String name, SDVariable input, SDVariable mean, SDVariable variance,
SDVariable gamma, SDVariable beta, double epsilon, int... axis) {
SDValidation.validateNumerical("batchNorm", "input", input);
SDValidation.validateNumerical("batchNorm", "mean", mean);
SDValidation.validateNumerical("batchNorm", "variance", variance);
SDValidation.validateNumerical("batchNorm", "gamma", gamma);
SDValidation.validateNumerical("batchNorm", "beta", beta);
Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length);
SDVariable out = new org.nd4j.linalg.api.ops.impl.layers.convolution.BatchNorm(sd,input, mean, variance, gamma, beta, epsilon, axis).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Bias addition operation: a special case of addition, typically used with CNN 4D activations and a 1D bias vector
*
* @param input 4d input variable (NUMERIC type)
* @param bias 1d bias (NUMERIC type)
* @param nchw The format - nchw=true means [minibatch, channels, height, width] format; nchw=false - [minibatch, height, width, channels].
* Unused for 2d inputs
* @return output Output variable, after applying bias add operation (NUMERIC type)
*/
public SDVariable biasAdd(SDVariable input, SDVariable bias, boolean nchw) {
SDValidation.validateNumerical("biasAdd", "input", input);
SDValidation.validateNumerical("biasAdd", "bias", bias);
return new org.nd4j.linalg.api.ops.impl.broadcast.BiasAdd(sd,input, bias, nchw).outputVariable();
}
/**
* Bias addition operation: a special case of addition, typically used with CNN 4D activations and a 1D bias vector
*
* @param name name May be null. Name for the output variable
* @param input 4d input variable (NUMERIC type)
* @param bias 1d bias (NUMERIC type)
* @param nchw The format - nchw=true means [minibatch, channels, height, width] format; nchw=false - [minibatch, height, width, channels].
* Unused for 2d inputs
* @return output Output variable, after applying bias add operation (NUMERIC type)
*/
public SDVariable biasAdd(String name, SDVariable input, SDVariable bias, boolean nchw) {
SDValidation.validateNumerical("biasAdd", "input", input);
SDValidation.validateNumerical("biasAdd", "bias", bias);
SDVariable out = new org.nd4j.linalg.api.ops.impl.broadcast.BiasAdd(sd,input, bias, nchw).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* This operation performs dot product attention on the given timeseries input with the given queries
* out = sum(similarity(k_i, q) * v_i)
*
* similarity(k, q) = softmax(k * q) where x * q is the dot product of x and q
*
* Optionally with normalization step:
* similarity(k, q) = softmax(k * q / sqrt(size(q))
*
* See also "Attention is all you need" (https://arxiv.org/abs/1706.03762, p. 4, eq. 1)
*
* Note: This supports multiple queries at once, if only one query is available the queries vector still has to
* be 3D but can have queryCount = 1
*
* Note: keys and values usually is the same array. If you want to use it as the same array, simply pass it for
* both.
*
* Note: Queries, keys and values must either be all rank 3 or all rank 4 arrays. Mixing them doesn't work. The
* output rank will depend on the input rank.
*
* @param queries input 3D array "queries" of shape [batchSize, featureKeys, queryCount]
* or 4D array of shape [batchSize, numHeads, featureKeys, queryCount] (NUMERIC type)
* @param keys input 3D array "keys" of shape [batchSize, featureKeys, timesteps]
* or 4D array of shape [batchSize, numHeads, featureKeys, timesteps] (NUMERIC type)
* @param values input 3D array "values" of shape [batchSize, featureValues, timesteps]
* or 4D array of shape [batchSize, numHeads, featureValues, timesteps] (NUMERIC type)
* @param mask OPTIONAL; array that defines which values should be skipped of shape [batchSize, timesteps] (NUMERIC type)
* @param scaled normalization, false -> do not apply normalization, true -> apply normalization
* @return output Attention result arrays of shape [batchSize, featureValues, queryCount] or [batchSize, numHeads, featureValues, queryCount],
* (optionally) Attention Weights of shape [batchSize, timesteps, queryCount] or [batchSize, numHeads, timesteps, queryCount] (NUMERIC type)
*/
public SDVariable dotProductAttention(SDVariable queries, SDVariable keys, SDVariable values,
SDVariable mask, boolean scaled) {
SDValidation.validateNumerical("dotProductAttention", "queries", queries);
SDValidation.validateNumerical("dotProductAttention", "keys", keys);
SDValidation.validateNumerical("dotProductAttention", "values", values);
SDValidation.validateNumerical("dotProductAttention", "mask", mask);
return new org.nd4j.linalg.api.ops.impl.transforms.custom.DotProductAttention(sd,queries, keys, values, mask, scaled, false).outputVariable();
}
/**
* This operation performs dot product attention on the given timeseries input with the given queries
* out = sum(similarity(k_i, q) * v_i)
*
* similarity(k, q) = softmax(k * q) where x * q is the dot product of x and q
*
* Optionally with normalization step:
* similarity(k, q) = softmax(k * q / sqrt(size(q))
*
* See also "Attention is all you need" (https://arxiv.org/abs/1706.03762, p. 4, eq. 1)
*
* Note: This supports multiple queries at once, if only one query is available the queries vector still has to
* be 3D but can have queryCount = 1
*
* Note: keys and values usually is the same array. If you want to use it as the same array, simply pass it for
* both.
*
* Note: Queries, keys and values must either be all rank 3 or all rank 4 arrays. Mixing them doesn't work. The
* output rank will depend on the input rank.
*
* @param name name May be null. Name for the output variable
* @param queries input 3D array "queries" of shape [batchSize, featureKeys, queryCount]
* or 4D array of shape [batchSize, numHeads, featureKeys, queryCount] (NUMERIC type)
* @param keys input 3D array "keys" of shape [batchSize, featureKeys, timesteps]
* or 4D array of shape [batchSize, numHeads, featureKeys, timesteps] (NUMERIC type)
* @param values input 3D array "values" of shape [batchSize, featureValues, timesteps]
* or 4D array of shape [batchSize, numHeads, featureValues, timesteps] (NUMERIC type)
* @param mask OPTIONAL; array that defines which values should be skipped of shape [batchSize, timesteps] (NUMERIC type)
* @param scaled normalization, false -> do not apply normalization, true -> apply normalization
* @return output Attention result arrays of shape [batchSize, featureValues, queryCount] or [batchSize, numHeads, featureValues, queryCount],
* (optionally) Attention Weights of shape [batchSize, timesteps, queryCount] or [batchSize, numHeads, timesteps, queryCount] (NUMERIC type)
*/
public SDVariable dotProductAttention(String name, SDVariable queries, SDVariable keys,
SDVariable values, SDVariable mask, boolean scaled) {
SDValidation.validateNumerical("dotProductAttention", "queries", queries);
SDValidation.validateNumerical("dotProductAttention", "keys", keys);
SDValidation.validateNumerical("dotProductAttention", "values", values);
SDValidation.validateNumerical("dotProductAttention", "mask", mask);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.DotProductAttention(sd,queries, keys, values, mask, scaled, false).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Dropout operation
*
* @param input Input array (NUMERIC type)
* @param inputRetainProbability Probability of retaining an input (set to 0 with probability 1-p)
* @return output Output (NUMERIC type)
*/
public SDVariable dropout(SDVariable input, double inputRetainProbability) {
SDValidation.validateNumerical("dropout", "input", input);
return new org.nd4j.linalg.api.ops.random.impl.DropOut(sd,input, inputRetainProbability).outputVariable();
}
/**
* Dropout operation
*
* @param name name May be null. Name for the output variable
* @param input Input array (NUMERIC type)
* @param inputRetainProbability Probability of retaining an input (set to 0 with probability 1-p)
* @return output Output (NUMERIC type)
*/
public SDVariable dropout(String name, SDVariable input, double inputRetainProbability) {
SDValidation.validateNumerical("dropout", "input", input);
SDVariable out = new org.nd4j.linalg.api.ops.random.impl.DropOut(sd,input, inputRetainProbability).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise exponential linear unit (ELU) function:
* out = x if x > 0
* out = a * (exp(x) - 1) if x <= 0
* with constant a = 1.0
*
* See: https://arxiv.org/abs/1511.07289
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable elu(SDVariable x) {
SDValidation.validateNumerical("elu", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.strict.ELU(sd,x).outputVariable();
}
/**
* Element-wise exponential linear unit (ELU) function:
* out = x if x > 0
* out = a * (exp(x) - 1) if x <= 0
* with constant a = 1.0
*
* See: https://arxiv.org/abs/1511.07289
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable elu(String name, SDVariable x) {
SDValidation.validateNumerical("elu", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.strict.ELU(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* GELU activation function - Gaussian Error Linear Units
* For more details, see Gaussian Error Linear Units (GELUs) - https://arxiv.org/abs/1606.08415
* This method uses the sigmoid approximation
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable gelu(SDVariable x) {
SDValidation.validateNumerical("gelu", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.strict.GELU(sd,x).outputVariable();
}
/**
* GELU activation function - Gaussian Error Linear Units
* For more details, see Gaussian Error Linear Units (GELUs) - https://arxiv.org/abs/1606.08415
* This method uses the sigmoid approximation
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable gelu(String name, SDVariable x) {
SDValidation.validateNumerical("gelu", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.strict.GELU(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise hard sigmoid function:
* out[i] = 0 if in[i] <= -2.5
* out[1] = 0.2*in[i]+0.5 if -2.5 < in[i] < 2.5
* out[i] = 1 if in[i] >= 2.5
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable hardSigmoid(SDVariable x) {
SDValidation.validateNumerical("hardSigmoid", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.strict.HardSigmoid(sd,x).outputVariable();
}
/**
* Element-wise hard sigmoid function:
* out[i] = 0 if in[i] <= -2.5
* out[1] = 0.2*in[i]+0.5 if -2.5 < in[i] < 2.5
* out[i] = 1 if in[i] >= 2.5
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable hardSigmoid(String name, SDVariable x) {
SDValidation.validateNumerical("hardSigmoid", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.strict.HardSigmoid(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise hard tanh function:
* out[i] = -1 if in[i] <= -1
* out[1] = in[i] if -1 < in[i] < 1
* out[i] = 1 if in[i] >= 1
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable hardTanh(SDVariable x) {
SDValidation.validateNumerical("hardTanh", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.strict.HardTanh(sd,x).outputVariable();
}
/**
* Element-wise hard tanh function:
* out[i] = -1 if in[i] <= -1
* out[1] = in[i] if -1 < in[i] < 1
* out[i] = 1 if in[i] >= 1
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable hardTanh(String name, SDVariable x) {
SDValidation.validateNumerical("hardTanh", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.strict.HardTanh(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Derivative (dOut/dIn) of the element-wise hard Tanh function - hardTanh(INDArray)
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable hardTanhDerivative(SDVariable x) {
SDValidation.validateNumerical("hardTanhDerivative", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.gradient.HardTanhDerivative(sd,x).outputVariable();
}
/**
* Derivative (dOut/dIn) of the element-wise hard Tanh function - hardTanh(INDArray)
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable hardTanhDerivative(String name, SDVariable x) {
SDValidation.validateNumerical("hardTanhDerivative", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.gradient.HardTanhDerivative(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Apply Layer Normalization
*
* y = gain * standardize(x) + bias
*
* @param input Input variable (NUMERIC type)
* @param gain Gain (NUMERIC type)
* @param bias Bias (NUMERIC type)
* @param channelsFirst For 2D input - unused. True for NCHW (minibatch, channels, height, width), false for NHWC data
* @param dimensions Dimensions to perform layer norm over - dimension=1 for 2d/MLP data, dimension=1,2,3 for CNNs (Size: AtLeast(min=1))
* @return output Output variable (NUMERIC type)
*/
public SDVariable layerNorm(SDVariable input, SDVariable gain, SDVariable bias,
boolean channelsFirst, int... dimensions) {
SDValidation.validateNumerical("layerNorm", "input", input);
SDValidation.validateNumerical("layerNorm", "gain", gain);
SDValidation.validateNumerical("layerNorm", "bias", bias);
Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length);
return new org.nd4j.linalg.api.ops.impl.transforms.custom.LayerNorm(sd,input, gain, bias, channelsFirst, dimensions).outputVariable();
}
/**
* Apply Layer Normalization
*
* y = gain * standardize(x) + bias
*
* @param name name May be null. Name for the output variable
* @param input Input variable (NUMERIC type)
* @param gain Gain (NUMERIC type)
* @param bias Bias (NUMERIC type)
* @param channelsFirst For 2D input - unused. True for NCHW (minibatch, channels, height, width), false for NHWC data
* @param dimensions Dimensions to perform layer norm over - dimension=1 for 2d/MLP data, dimension=1,2,3 for CNNs (Size: AtLeast(min=1))
* @return output Output variable (NUMERIC type)
*/
public SDVariable layerNorm(String name, SDVariable input, SDVariable gain, SDVariable bias,
boolean channelsFirst, int... dimensions) {
SDValidation.validateNumerical("layerNorm", "input", input);
SDValidation.validateNumerical("layerNorm", "gain", gain);
SDValidation.validateNumerical("layerNorm", "bias", bias);
Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.LayerNorm(sd,input, gain, bias, channelsFirst, dimensions).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Apply Layer Normalization
*
* y = gain * standardize(x) + bias
*
* @param input Input variable (NUMERIC type)
* @param gain Gain (NUMERIC type)
* @param channelsFirst For 2D input - unused. True for NCHW (minibatch, channels, height, width), false for NHWC data
* @param dimensions Dimensions to perform layer norm over - dimension=1 for 2d/MLP data, dimension=1,2,3 for CNNs (Size: AtLeast(min=1))
* @return output Output variable (NUMERIC type)
*/
public SDVariable layerNorm(SDVariable input, SDVariable gain, boolean channelsFirst,
int... dimensions) {
SDValidation.validateNumerical("layerNorm", "input", input);
SDValidation.validateNumerical("layerNorm", "gain", gain);
Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length);
return new org.nd4j.linalg.api.ops.impl.transforms.custom.LayerNorm(sd,input, gain, null, channelsFirst, dimensions).outputVariable();
}
/**
* Apply Layer Normalization
*
* y = gain * standardize(x) + bias
*
* @param name name May be null. Name for the output variable
* @param input Input variable (NUMERIC type)
* @param gain Gain (NUMERIC type)
* @param channelsFirst For 2D input - unused. True for NCHW (minibatch, channels, height, width), false for NHWC data
* @param dimensions Dimensions to perform layer norm over - dimension=1 for 2d/MLP data, dimension=1,2,3 for CNNs (Size: AtLeast(min=1))
* @return output Output variable (NUMERIC type)
*/
public SDVariable layerNorm(String name, SDVariable input, SDVariable gain, boolean channelsFirst,
int... dimensions) {
SDValidation.validateNumerical("layerNorm", "input", input);
SDValidation.validateNumerical("layerNorm", "gain", gain);
Preconditions.checkArgument(dimensions.length >= 1, "dimensions has incorrect size/length. Expected: dimensions.length >= 1, got %s", dimensions.length);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.LayerNorm(sd,input, gain, null, channelsFirst, dimensions).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise leaky ReLU function:
* out = x if x >= 0.0
* out = alpha * x if x < cutoff
* Alpha value is most commonly set to 0.01
*
* @param x Input variable (NUMERIC type)
* @param alpha Cutoff - commonly 0.01
* @return output Output variable (NUMERIC type)
*/
public SDVariable leakyRelu(SDVariable x, double alpha) {
SDValidation.validateNumerical("leakyRelu", "x", x);
return new org.nd4j.linalg.api.ops.impl.scalar.LeakyReLU(sd,x, alpha).outputVariable();
}
/**
* Element-wise leaky ReLU function:
* out = x if x >= 0.0
* out = alpha * x if x < cutoff
* Alpha value is most commonly set to 0.01
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @param alpha Cutoff - commonly 0.01
* @return output Output variable (NUMERIC type)
*/
public SDVariable leakyRelu(String name, SDVariable x, double alpha) {
SDValidation.validateNumerical("leakyRelu", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.LeakyReLU(sd,x, alpha).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Leaky ReLU derivative: dOut/dIn given input.
*
* @param x Input variable (NUMERIC type)
* @param alpha Cutoff - commonly 0.01
* @return output Output variable (NUMERIC type)
*/
public SDVariable leakyReluDerivative(SDVariable x, double alpha) {
SDValidation.validateNumerical("leakyReluDerivative", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.gradient.LeakyReLUDerivative(sd,x, alpha).outputVariable();
}
/**
* Leaky ReLU derivative: dOut/dIn given input.
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @param alpha Cutoff - commonly 0.01
* @return output Output variable (NUMERIC type)
*/
public SDVariable leakyReluDerivative(String name, SDVariable x, double alpha) {
SDValidation.validateNumerical("leakyReluDerivative", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.gradient.LeakyReLUDerivative(sd,x, alpha).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Linear layer operation: out = mmul(in,w) + bias
* Note that bias array is optional
*
* @param input Input data (NUMERIC type)
* @param weights Weights variable, shape [nIn, nOut] (NUMERIC type)
* @param bias Optional bias variable (may be null) (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable linear(SDVariable input, SDVariable weights, SDVariable bias) {
SDValidation.validateNumerical("linear", "input", input);
SDValidation.validateNumerical("linear", "weights", weights);
SDValidation.validateNumerical("linear", "bias", bias);
return new org.nd4j.linalg.api.ops.impl.transforms.custom.XwPlusB(sd,input, weights, bias).outputVariable();
}
/**
* Linear layer operation: out = mmul(in,w) + bias
* Note that bias array is optional
*
* @param name name May be null. Name for the output variable
* @param input Input data (NUMERIC type)
* @param weights Weights variable, shape [nIn, nOut] (NUMERIC type)
* @param bias Optional bias variable (may be null) (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable linear(String name, SDVariable input, SDVariable weights, SDVariable bias) {
SDValidation.validateNumerical("linear", "input", input);
SDValidation.validateNumerical("linear", "weights", weights);
SDValidation.validateNumerical("linear", "bias", bias);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.XwPlusB(sd,input, weights, bias).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise sigmoid function: out[i] = log(sigmoid(in[i]))
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable logSigmoid(SDVariable x) {
SDValidation.validateNumerical("logSigmoid", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.strict.LogSigmoid(sd,x).outputVariable();
}
/**
* Element-wise sigmoid function: out[i] = log(sigmoid(in[i]))
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable logSigmoid(String name, SDVariable x) {
SDValidation.validateNumerical("logSigmoid", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.strict.LogSigmoid(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Log softmax activation
*
* @param x (NUMERIC type)
* @return output (NUMERIC type)
*/
public SDVariable logSoftmax(SDVariable x) {
SDValidation.validateNumerical("logSoftmax", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.custom.LogSoftMax(sd,x).outputVariable();
}
/**
* Log softmax activation
*
* @param name name May be null. Name for the output variable
* @param x (NUMERIC type)
* @return output (NUMERIC type)
*/
public SDVariable logSoftmax(String name, SDVariable x) {
SDValidation.validateNumerical("logSoftmax", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.LogSoftMax(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Log softmax activation
*
* @param x Input (NUMERIC type)
* @param dimension Dimension along which to apply log softmax
* @return output Output - log(softmax(input)) (NUMERIC type)
*/
public SDVariable logSoftmax(SDVariable x, int dimension) {
SDValidation.validateNumerical("logSoftmax", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.custom.LogSoftMax(sd,x, dimension).outputVariable();
}
/**
* Log softmax activation
*
* @param name name May be null. Name for the output variable
* @param x Input (NUMERIC type)
* @param dimension Dimension along which to apply log softmax
* @return output Output - log(softmax(input)) (NUMERIC type)
*/
public SDVariable logSoftmax(String name, SDVariable x, int dimension) {
SDValidation.validateNumerical("logSoftmax", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.LogSoftMax(sd,x, dimension).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* This performs multi-headed dot product attention on the given timeseries input
* out = concat(head_1, head_2, ..., head_n) * Wo
* head_i = dot_product_attention(Wq_i*q, Wk_i*k, Wv_i*v)
*
* Optionally with normalization when calculating the attention for each head.
*
* See also "Attention is all you need" (https://arxiv.org/abs/1706.03762, pp. 4,5, "3.2.2 Multi-Head Attention")
*
* This makes use of dot_product_attention OP support for rank 4 inputs.
* see dotProductAttention(INDArray, INDArray, INDArray, INDArray, boolean, boolean)
*
* @param queries input 3D array "queries" of shape [batchSize, featureKeys, queryCount] (NUMERIC type)
* @param keys input 3D array "keys" of shape [batchSize, featureKeys, timesteps] (NUMERIC type)
* @param values input 3D array "values" of shape [batchSize, featureValues, timesteps] (NUMERIC type)
* @param Wq input query projection weights of shape [numHeads, projectedKeys, featureKeys] (NUMERIC type)
* @param Wk input key projection weights of shape [numHeads, projectedKeys, featureKeys] (NUMERIC type)
* @param Wv input value projection weights of shape [numHeads, projectedValues, featureValues] (NUMERIC type)
* @param Wo output projection weights of shape [numHeads * projectedValues, outSize] (NUMERIC type)
* @param mask OPTIONAL; array that defines which values should be skipped of shape [batchSize, timesteps] (NUMERIC type)
* @param scaled normalization, false -> do not apply normalization, true -> apply normalization
* @return output Attention result arrays of shape [batchSize, outSize, queryCount]
* (optionally) Attention Weights of shape [batchSize, numHeads, timesteps, queryCount] (NUMERIC type)
*/
public SDVariable multiHeadDotProductAttention(SDVariable queries, SDVariable keys,
SDVariable values, SDVariable Wq, SDVariable Wk, SDVariable Wv, SDVariable Wo,
SDVariable mask, boolean scaled) {
SDValidation.validateNumerical("multiHeadDotProductAttention", "queries", queries);
SDValidation.validateNumerical("multiHeadDotProductAttention", "keys", keys);
SDValidation.validateNumerical("multiHeadDotProductAttention", "values", values);
SDValidation.validateNumerical("multiHeadDotProductAttention", "Wq", Wq);
SDValidation.validateNumerical("multiHeadDotProductAttention", "Wk", Wk);
SDValidation.validateNumerical("multiHeadDotProductAttention", "Wv", Wv);
SDValidation.validateNumerical("multiHeadDotProductAttention", "Wo", Wo);
SDValidation.validateNumerical("multiHeadDotProductAttention", "mask", mask);
return new org.nd4j.linalg.api.ops.impl.transforms.custom.MultiHeadDotProductAttention(sd,queries, keys, values, Wq, Wk, Wv, Wo, mask, scaled, false).outputVariable();
}
/**
* This performs multi-headed dot product attention on the given timeseries input
* out = concat(head_1, head_2, ..., head_n) * Wo
* head_i = dot_product_attention(Wq_i*q, Wk_i*k, Wv_i*v)
*
* Optionally with normalization when calculating the attention for each head.
*
* See also "Attention is all you need" (https://arxiv.org/abs/1706.03762, pp. 4,5, "3.2.2 Multi-Head Attention")
*
* This makes use of dot_product_attention OP support for rank 4 inputs.
* see dotProductAttention(INDArray, INDArray, INDArray, INDArray, boolean, boolean)
*
* @param name name May be null. Name for the output variable
* @param queries input 3D array "queries" of shape [batchSize, featureKeys, queryCount] (NUMERIC type)
* @param keys input 3D array "keys" of shape [batchSize, featureKeys, timesteps] (NUMERIC type)
* @param values input 3D array "values" of shape [batchSize, featureValues, timesteps] (NUMERIC type)
* @param Wq input query projection weights of shape [numHeads, projectedKeys, featureKeys] (NUMERIC type)
* @param Wk input key projection weights of shape [numHeads, projectedKeys, featureKeys] (NUMERIC type)
* @param Wv input value projection weights of shape [numHeads, projectedValues, featureValues] (NUMERIC type)
* @param Wo output projection weights of shape [numHeads * projectedValues, outSize] (NUMERIC type)
* @param mask OPTIONAL; array that defines which values should be skipped of shape [batchSize, timesteps] (NUMERIC type)
* @param scaled normalization, false -> do not apply normalization, true -> apply normalization
* @return output Attention result arrays of shape [batchSize, outSize, queryCount]
* (optionally) Attention Weights of shape [batchSize, numHeads, timesteps, queryCount] (NUMERIC type)
*/
public SDVariable multiHeadDotProductAttention(String name, SDVariable queries, SDVariable keys,
SDVariable values, SDVariable Wq, SDVariable Wk, SDVariable Wv, SDVariable Wo,
SDVariable mask, boolean scaled) {
SDValidation.validateNumerical("multiHeadDotProductAttention", "queries", queries);
SDValidation.validateNumerical("multiHeadDotProductAttention", "keys", keys);
SDValidation.validateNumerical("multiHeadDotProductAttention", "values", values);
SDValidation.validateNumerical("multiHeadDotProductAttention", "Wq", Wq);
SDValidation.validateNumerical("multiHeadDotProductAttention", "Wk", Wk);
SDValidation.validateNumerical("multiHeadDotProductAttention", "Wv", Wv);
SDValidation.validateNumerical("multiHeadDotProductAttention", "Wo", Wo);
SDValidation.validateNumerical("multiHeadDotProductAttention", "mask", mask);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.MultiHeadDotProductAttention(sd,queries, keys, values, Wq, Wk, Wv, Wo, mask, scaled, false).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Padding operation
*
* @param input Input tensor (NUMERIC type)
* @param padding Padding value (NUMERIC type)
* @param PadMode Padding format
* @param constant Padding constant
* @return output Padded input (NUMERIC type)
*/
public SDVariable pad(SDVariable input, SDVariable padding, PadMode PadMode, double constant) {
SDValidation.validateNumerical("pad", "input", input);
SDValidation.validateNumerical("pad", "padding", padding);
return new org.nd4j.linalg.api.ops.impl.transforms.Pad(sd,input, padding, PadMode, constant).outputVariable();
}
/**
* Padding operation
*
* @param name name May be null. Name for the output variable
* @param input Input tensor (NUMERIC type)
* @param padding Padding value (NUMERIC type)
* @param PadMode Padding format
* @param constant Padding constant
* @return output Padded input (NUMERIC type)
*/
public SDVariable pad(String name, SDVariable input, SDVariable padding, PadMode PadMode,
double constant) {
SDValidation.validateNumerical("pad", "input", input);
SDValidation.validateNumerical("pad", "padding", padding);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.Pad(sd,input, padding, PadMode, constant).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Padding operation
*
* @param input Input tensor (NUMERIC type)
* @param padding Padding value (NUMERIC type)
* @param constant Padding constant
* @return output Padded input (NUMERIC type)
*/
public SDVariable pad(SDVariable input, SDVariable padding, double constant) {
SDValidation.validateNumerical("pad", "input", input);
SDValidation.validateNumerical("pad", "padding", padding);
return new org.nd4j.linalg.api.ops.impl.transforms.Pad(sd,input, padding, PadMode.CONSTANT, constant).outputVariable();
}
/**
* Padding operation
*
* @param name name May be null. Name for the output variable
* @param input Input tensor (NUMERIC type)
* @param padding Padding value (NUMERIC type)
* @param constant Padding constant
* @return output Padded input (NUMERIC type)
*/
public SDVariable pad(String name, SDVariable input, SDVariable padding, double constant) {
SDValidation.validateNumerical("pad", "input", input);
SDValidation.validateNumerical("pad", "padding", padding);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.Pad(sd,input, padding, PadMode.CONSTANT, constant).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* GELU activation function - Gaussian Error Linear Units
* For more details, see Gaussian Error Linear Units (GELUs) - https://arxiv.org/abs/1606.08415
* This method uses the precise method
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable preciseGelu(SDVariable x) {
SDValidation.validateNumerical("preciseGelu", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.strict.PreciseGELU(sd,x).outputVariable();
}
/**
* GELU activation function - Gaussian Error Linear Units
* For more details, see Gaussian Error Linear Units (GELUs) - https://arxiv.org/abs/1606.08415
* This method uses the precise method
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable preciseGelu(String name, SDVariable x) {
SDValidation.validateNumerical("preciseGelu", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.strict.PreciseGELU(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* PReLU (Parameterized Rectified Linear Unit) operation. Like LeakyReLU with a learnable alpha:
* out[i] = in[i] if in[i] >= 0
* out[i] = in[i] * alpha[i] otherwise
*
* sharedAxes allows you to share learnable parameters along axes.
* For example, if the input has shape [batchSize, channels, height, width]
* and you want each channel to have its own cutoff, use sharedAxes = [2, 3] and an
* alpha with shape [channels].
*
* @param input Input data (NUMERIC type)
* @param alpha The cutoff variable. Note that the batch dimension (the 0th, whether it is batch or not) should not be part of alpha. (NUMERIC type)
* @param sharedAxes Which axes to share cutoff parameters along. (Size: AtLeast(min=1))
* @return output Output (NUMERIC type)
*/
public SDVariable prelu(SDVariable input, SDVariable alpha, int... sharedAxes) {
SDValidation.validateNumerical("prelu", "input", input);
SDValidation.validateNumerical("prelu", "alpha", alpha);
Preconditions.checkArgument(sharedAxes.length >= 1, "sharedAxes has incorrect size/length. Expected: sharedAxes.length >= 1, got %s", sharedAxes.length);
return new org.nd4j.linalg.api.ops.impl.scalar.PRelu(sd,input, alpha, sharedAxes).outputVariable();
}
/**
* PReLU (Parameterized Rectified Linear Unit) operation. Like LeakyReLU with a learnable alpha:
* out[i] = in[i] if in[i] >= 0
* out[i] = in[i] * alpha[i] otherwise
*
* sharedAxes allows you to share learnable parameters along axes.
* For example, if the input has shape [batchSize, channels, height, width]
* and you want each channel to have its own cutoff, use sharedAxes = [2, 3] and an
* alpha with shape [channels].
*
* @param name name May be null. Name for the output variable
* @param input Input data (NUMERIC type)
* @param alpha The cutoff variable. Note that the batch dimension (the 0th, whether it is batch or not) should not be part of alpha. (NUMERIC type)
* @param sharedAxes Which axes to share cutoff parameters along. (Size: AtLeast(min=1))
* @return output Output (NUMERIC type)
*/
public SDVariable prelu(String name, SDVariable input, SDVariable alpha, int... sharedAxes) {
SDValidation.validateNumerical("prelu", "input", input);
SDValidation.validateNumerical("prelu", "alpha", alpha);
Preconditions.checkArgument(sharedAxes.length >= 1, "sharedAxes has incorrect size/length. Expected: sharedAxes.length >= 1, got %s", sharedAxes.length);
SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.PRelu(sd,input, alpha, sharedAxes).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise rectified linear function with specified cutoff:
* out[i] = in[i] if in[i] >= cutoff
* out[i] = 0 otherwise
*
* @param x Input (NUMERIC type)
* @param cutoff Cutoff value for ReLU operation - x > cutoff ? x : 0. Usually 0
* @return output Output (NUMERIC type)
*/
public SDVariable relu(SDVariable x, double cutoff) {
SDValidation.validateNumerical("relu", "x", x);
return new org.nd4j.linalg.api.ops.impl.scalar.RectifiedLinear(sd,x, cutoff).outputVariable();
}
/**
* Element-wise rectified linear function with specified cutoff:
* out[i] = in[i] if in[i] >= cutoff
* out[i] = 0 otherwise
*
* @param name name May be null. Name for the output variable
* @param x Input (NUMERIC type)
* @param cutoff Cutoff value for ReLU operation - x > cutoff ? x : 0. Usually 0
* @return output Output (NUMERIC type)
*/
public SDVariable relu(String name, SDVariable x, double cutoff) {
SDValidation.validateNumerical("relu", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.RectifiedLinear(sd,x, cutoff).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise "rectified linear 6" function with specified cutoff:
* out[i] = min(max(in, cutoff), 6)
*
* @param x Input (NUMERIC type)
* @param cutoff Cutoff value for ReLU operation. Usually 0
* @return output Output (NUMERIC type)
*/
public SDVariable relu6(SDVariable x, double cutoff) {
SDValidation.validateNumerical("relu6", "x", x);
return new org.nd4j.linalg.api.ops.impl.scalar.Relu6(sd,x, cutoff).outputVariable();
}
/**
* Element-wise "rectified linear 6" function with specified cutoff:
* out[i] = min(max(in, cutoff), 6)
*
* @param name name May be null. Name for the output variable
* @param x Input (NUMERIC type)
* @param cutoff Cutoff value for ReLU operation. Usually 0
* @return output Output (NUMERIC type)
*/
public SDVariable relu6(String name, SDVariable x, double cutoff) {
SDValidation.validateNumerical("relu6", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.scalar.Relu6(sd,x, cutoff).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* ReLU (Rectified Linear Unit) layer operation: out = relu(mmul(in,w) + bias)
* Note that bias array is optional
*
* @param input Input data (NUMERIC type)
* @param weights Weights variable (NUMERIC type)
* @param bias Optional bias variable (may be null) (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable reluLayer(SDVariable input, SDVariable weights, SDVariable bias) {
SDValidation.validateNumerical("reluLayer", "input", input);
SDValidation.validateNumerical("reluLayer", "weights", weights);
SDValidation.validateNumerical("reluLayer", "bias", bias);
return new org.nd4j.linalg.api.ops.impl.transforms.ReluLayer(sd,input, weights, bias).outputVariable();
}
/**
* ReLU (Rectified Linear Unit) layer operation: out = relu(mmul(in,w) + bias)
* Note that bias array is optional
*
* @param name name May be null. Name for the output variable
* @param input Input data (NUMERIC type)
* @param weights Weights variable (NUMERIC type)
* @param bias Optional bias variable (may be null) (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable reluLayer(String name, SDVariable input, SDVariable weights, SDVariable bias) {
SDValidation.validateNumerical("reluLayer", "input", input);
SDValidation.validateNumerical("reluLayer", "weights", weights);
SDValidation.validateNumerical("reluLayer", "bias", bias);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.ReluLayer(sd,input, weights, bias).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise SeLU function - Scaled exponential Lineal Unit: see Self-Normalizing Neural Networks
*
* out[i] = scale * alpha * (exp(in[i])-1) if in[i]>0, or 0 if in[i] <= 0
* Uses default scale and alpha values.
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable selu(SDVariable x) {
SDValidation.validateNumerical("selu", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.strict.SELU(sd,x).outputVariable();
}
/**
* Element-wise SeLU function - Scaled exponential Lineal Unit: see Self-Normalizing Neural Networks
*
* out[i] = scale * alpha * (exp(in[i])-1) if in[i]>0, or 0 if in[i] <= 0
* Uses default scale and alpha values.
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable selu(String name, SDVariable x) {
SDValidation.validateNumerical("selu", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.strict.SELU(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise sigmoid function: out[i] = 1.0/(1+exp(-in[i]))
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable sigmoid(SDVariable x) {
SDValidation.validateNumerical("sigmoid", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.strict.Sigmoid(sd,x).outputVariable();
}
/**
* Element-wise sigmoid function: out[i] = 1.0/(1+exp(-in[i]))
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable sigmoid(String name, SDVariable x) {
SDValidation.validateNumerical("sigmoid", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.strict.Sigmoid(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise sigmoid function derivative: dL/dIn given input and dL/dOut
*
* @param x Input Variable (NUMERIC type)
* @param wrt Gradient at the output - dL/dOut. Must have same shape as the input (NUMERIC type)
* @return output Output (gradient at input of sigmoid) (NUMERIC type)
*/
public SDVariable sigmoidDerivative(SDVariable x, SDVariable wrt) {
SDValidation.validateNumerical("sigmoidDerivative", "x", x);
SDValidation.validateNumerical("sigmoidDerivative", "wrt", wrt);
return new org.nd4j.linalg.api.ops.impl.transforms.gradient.SigmoidDerivative(sd,x, wrt).outputVariable();
}
/**
* Element-wise sigmoid function derivative: dL/dIn given input and dL/dOut
*
* @param name name May be null. Name for the output variable
* @param x Input Variable (NUMERIC type)
* @param wrt Gradient at the output - dL/dOut. Must have same shape as the input (NUMERIC type)
* @return output Output (gradient at input of sigmoid) (NUMERIC type)
*/
public SDVariable sigmoidDerivative(String name, SDVariable x, SDVariable wrt) {
SDValidation.validateNumerical("sigmoidDerivative", "x", x);
SDValidation.validateNumerical("sigmoidDerivative", "wrt", wrt);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.gradient.SigmoidDerivative(sd,x, wrt).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Softmax activation, along the specified dimension
*
* @param x Input (NUMERIC type)
* @param dimension Dimension along which to apply softmax
* @return output Output variable (NUMERIC type)
*/
public SDVariable softmax(SDVariable x, int dimension) {
SDValidation.validateNumerical("softmax", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.custom.SoftMax(sd,x, dimension).outputVariable();
}
/**
* Softmax activation, along the specified dimension
*
* @param name name May be null. Name for the output variable
* @param x Input (NUMERIC type)
* @param dimension Dimension along which to apply softmax
* @return output Output variable (NUMERIC type)
*/
public SDVariable softmax(String name, SDVariable x, int dimension) {
SDValidation.validateNumerical("softmax", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.SoftMax(sd,x, dimension).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Softmax activation, along the specified dimension
*
* @param x Input (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable softmax(SDVariable x) {
SDValidation.validateNumerical("softmax", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.custom.SoftMax(sd,x, -1).outputVariable();
}
/**
* Softmax activation, along the specified dimension
*
* @param name name May be null. Name for the output variable
* @param x Input (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable softmax(String name, SDVariable x) {
SDValidation.validateNumerical("softmax", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.custom.SoftMax(sd,x, -1).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Softmax derivative function
*
* @param x Softmax input (NUMERIC type)
* @param wrt Gradient at output, dL/dx (NUMERIC type)
* @param dimension Softmax dimension
* @return output (NUMERIC type)
*/
public SDVariable softmaxDerivative(SDVariable x, SDVariable wrt, int dimension) {
SDValidation.validateNumerical("softmaxDerivative", "x", x);
SDValidation.validateNumerical("softmaxDerivative", "wrt", wrt);
return new org.nd4j.linalg.api.ops.impl.transforms.gradient.SoftmaxBp(sd,x, wrt, dimension).outputVariable();
}
/**
* Softmax derivative function
*
* @param name name May be null. Name for the output variable
* @param x Softmax input (NUMERIC type)
* @param wrt Gradient at output, dL/dx (NUMERIC type)
* @param dimension Softmax dimension
* @return output (NUMERIC type)
*/
public SDVariable softmaxDerivative(String name, SDVariable x, SDVariable wrt, int dimension) {
SDValidation.validateNumerical("softmaxDerivative", "x", x);
SDValidation.validateNumerical("softmaxDerivative", "wrt", wrt);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.gradient.SoftmaxBp(sd,x, wrt, dimension).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise softplus function: out = log(exp(x) + 1)
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable softplus(SDVariable x) {
SDValidation.validateNumerical("softplus", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.strict.SoftPlus(sd,x).outputVariable();
}
/**
* Element-wise softplus function: out = log(exp(x) + 1)
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable softplus(String name, SDVariable x) {
SDValidation.validateNumerical("softplus", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.strict.SoftPlus(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise softsign function: out = x / (abs(x) + 1)
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable softsign(SDVariable x) {
SDValidation.validateNumerical("softsign", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.strict.SoftSign(sd,x).outputVariable();
}
/**
* Element-wise softsign function: out = x / (abs(x) + 1)
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable softsign(String name, SDVariable x) {
SDValidation.validateNumerical("softsign", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.strict.SoftSign(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise derivative (dOut/dIn) of the softsign function softsign(INDArray)
*
* @param x Input variable (NUMERIC type)
* @return output Output (NUMERIC type)
*/
public SDVariable softsignDerivative(SDVariable x) {
SDValidation.validateNumerical("softsignDerivative", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.gradient.SoftSignDerivative(sd,x).outputVariable();
}
/**
* Element-wise derivative (dOut/dIn) of the softsign function softsign(INDArray)
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output (NUMERIC type)
*/
public SDVariable softsignDerivative(String name, SDVariable x) {
SDValidation.validateNumerical("softsignDerivative", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.gradient.SoftSignDerivative(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Element-wise "swish" function: out = x * sigmoid(b*x) with b=1.0
* See: https://arxiv.org/abs/1710.05941
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable swish(SDVariable x) {
SDValidation.validateNumerical("swish", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.strict.Swish(sd,x).outputVariable();
}
/**
* Element-wise "swish" function: out = x * sigmoid(b*x) with b=1.0
* See: https://arxiv.org/abs/1710.05941
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable swish(String name, SDVariable x) {
SDValidation.validateNumerical("swish", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.strict.Swish(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
/**
* Elementwise tanh (hyperbolic tangent) operation: out = tanh(x)
*
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable tanh(SDVariable x) {
SDValidation.validateNumerical("tanh", "x", x);
return new org.nd4j.linalg.api.ops.impl.transforms.strict.Tanh(sd,x).outputVariable();
}
/**
* Elementwise tanh (hyperbolic tangent) operation: out = tanh(x)
*
* @param name name May be null. Name for the output variable
* @param x Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public SDVariable tanh(String name, SDVariable x) {
SDValidation.validateNumerical("tanh", "x", x);
SDVariable out = new org.nd4j.linalg.api.ops.impl.transforms.strict.Tanh(sd,x).outputVariable();
return sd.updateVariableNameAndReference(out, name);
}
}