All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.api.ops.Op Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.nd4j.linalg.api.ops;

import org.nd4j.linalg.api.buffer.DataBuffer;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;

import java.nio.Buffer;

/**
 * An op is defined as follows:
 * opName: opName of the operation
 * x: the origin ndarray
 * y: the ndarray to parse in parallel
 * z: the resulting buffer
 * n: the number of elements to iterate over
 * where x is the origin ndarray,
 * y, is a pairwise op
 * over n elements in the ndarray
 * stored in result z
 * 

* This is followed from the standard template for a BLAS operation * such that given a linear buffer, a function defines 3 buffers (x,y,z) * and the associated strides and offsets (handled by the ndarrays in this case) * * @author Adam Gibson */ public interface Op { enum Type { SCALAR, SCALAR_BOOL, TRANSFORM_SAME, TRANSFORM_FLOAT, TRANSFORM_ANY, TRANSFORM_BOOL, TRANSFORM_STRICT, PAIRWISE, PAIRWISE_BOOL, SPECIAL, BROADCAST, BROADCAST_BOOL, REDUCE_LONG, REDUCE_SAME, REDUCE_FLOAT, REDUCE_BOOL, INDEXREDUCE, VARIANCE, REDUCE3, GRID, META, AGGREGATION, CUSTOM, GRADIENT, CONDITIONAL, LOOP, LOOP_COND, RETURN, RANDOM, SUMMARYSTATS, LOGIC } /** * Returns the extra args as a data buffer * @return */ DataBuffer extraArgsDataBuff(DataType bufferType); /** * Returns a buffer of either float * or double * of the extra args for this buffer * @return a buffer of either opType float or double * representing the extra args for this op */ Buffer extraArgsBuff(); /** * An op number * @return */ int opNum(); /** * The opName of this operation * * @return the opName of this operation */ String opName(); /** * The origin ndarray * * @return the origin ndarray */ INDArray x(); /** * The pairwise op ndarray * * @return the pairwise op ndarray */ INDArray y(); /** * The resulting ndarray * * @return the resulting ndarray */ INDArray z(); /** * Extra arguments * * @return the extra arguments */ Object[] extraArgs(); /** * set x (the input ndarray) * @param x */ void setX(INDArray x); /** * set z (the solution ndarray) * @param z */ void setZ(INDArray z); /** * set y(the pairwise ndarray) * @param y */ void setY(INDArray y); /** * * @param extraArgs */ void setExtraArgs(Object[] extraArgs); /** * Converts this op to be a {@link CustomOp} * A {@link CustomOp} is a more flexible op * meant for multiple inputs and outputs. * The default implementation in {@link BaseOp} * converts a simple op to a multi input/output operation * by mapping the x and y on to inputs , the op opName * and the z on to outputs. * @return the equivalent {@link CustomOp} */ CustomOp toCustomOp(); /** * Clear the input and output INDArrays, if any are set */ void clearArrays(); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy