Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.nd4j.linalg.factory.Broadcast Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.linalg.factory;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.broadcast.*;
import org.nd4j.linalg.api.ops.impl.broadcast.bool.*;
import org.nd4j.linalg.api.ops.impl.transforms.custom.EqualTo;
import org.nd4j.linalg.api.ops.impl.transforms.custom.GreaterThan;
import org.nd4j.linalg.api.ops.impl.transforms.custom.GreaterThanOrEqual;
import org.nd4j.linalg.api.ops.impl.transforms.custom.LessThan;
import org.nd4j.linalg.api.ops.impl.transforms.custom.LessThanOrEqual;
import org.nd4j.linalg.api.ops.impl.transforms.custom.Max;
import org.nd4j.linalg.api.ops.impl.transforms.custom.Min;
import org.nd4j.linalg.api.ops.impl.transforms.custom.NotEqualTo;
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.*;
import org.nd4j.linalg.api.ops.impl.transforms.same.AMax;
import org.nd4j.linalg.api.ops.impl.transforms.same.AMin;
import java.util.Arrays;
/**
* Convenience methods for broadcasts
*
* @author Alex Black
*/
public class Broadcast {
private Broadcast(){ }
/**
* Broadcast add op. See: {@link BroadcastAddOp}
*/
public static INDArray add(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new AddOp(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastAddOp(x,y,z,dimensions));
}
/**
* Broadcast copy op. See: {@link BroadcastCopyOp}
*/
public static INDArray copy(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new CopyOp(x,y,z));
}
return Nd4j.getExecutioner().exec(new BroadcastCopyOp(x,y,z,dimensions));
}
/**
* Broadcast divide op. See: {@link BroadcastDivOp}
*/
public static INDArray div(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new DivOp(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastDivOp(x,y,z,dimensions));
}
/**
* Broadcast equal to op. See: {@link BroadcastEqualTo}
*/
public static INDArray eq(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new EqualTo(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastEqualTo(x,y,z,dimensions));
}
/**
* Broadcast greater than op. See: {@link BroadcastGreaterThan}
*/
public static INDArray gt(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new GreaterThan(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastGreaterThan(x,y,z,dimensions));
}
/**
* Broadcast greater than or equal to op. See: {@link BroadcastGreaterThanOrEqual}
*/
public static INDArray gte(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new GreaterThanOrEqual(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastGreaterThanOrEqual(x,y,z,dimensions));
}
/**
* Broadcast less than op. See: {@link BroadcastLessThan}
*/
public static INDArray lt(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new LessThan(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastLessThan(x,y,z,dimensions));
}
/**
* Broadcast less than or equal to op. See: {@link BroadcastLessThanOrEqual}
*/
public static INDArray lte(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new LessThanOrEqual(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastLessThanOrEqual(x,y,z,dimensions));
}
/**
* Broadcast element-wise multiply op. See: {@link BroadcastMulOp}
*/
public static INDArray mul(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new MulOp(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastMulOp(x,y,z,dimensions));
}
/**
* Broadcast not equal to op. See: {@link BroadcastNotEqual}
*/
public static INDArray neq(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new NotEqualTo(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastNotEqual(x,y,z,dimensions));
}
/**
* Broadcast reverse division op. See: {@link BroadcastRDivOp}
*/
public static INDArray rdiv(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new RDivOp(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastRDivOp(x,y,z,dimensions));
}
/**
* Broadcast reverse subtraction op. See: {@link BroadcastRSubOp}
*/
public static INDArray rsub(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new SubOp(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastRSubOp(x,y,z,dimensions));
}
/**
* Broadcast subtraction op. See: {@link BroadcastSubOp}
*/
public static INDArray sub(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new SubOp(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastSubOp(x,y,z,dimensions));
}
/**
* Broadcast max op. See: {@link BroadcastMax}
*/
public static INDArray max(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new Max(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastMax(x,y,z,dimensions));
}
/**
* Broadcast min op. See: {@link BroadcastMin}
*/
public static INDArray min(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new Min(x,y,z))[0];
}
return Nd4j.getExecutioner().exec(new BroadcastMin(x,y,z,dimensions));
}
/**
* Broadcast absolute max op. See: {@link BroadcastAMax}
*/
public static INDArray amax(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new AMax(x,y,z));
}
return Nd4j.getExecutioner().exec(new BroadcastAMax(x,y,z,dimensions));
}
/**
* Broadcast absolute min op. See: {@link BroadcastAMax}
*/
public static INDArray amin(INDArray x, INDArray y, INDArray z, int... dimensions) {
if(dimensions == null || dimensions.length == 0) {
validateShapesNoDimCase(x,y,z);
return Nd4j.getExecutioner().exec(new AMin(x,y,z));
}
return Nd4j.getExecutioner().exec(new BroadcastAMin(x,y,z,dimensions));
}
public static void validateShapesNoDimCase(INDArray x, INDArray y, INDArray z){
Preconditions.checkArgument(x.equalShapes(y), "When no dimensions are provided, X and Y shapes must be" +
" equal (x shape: %s, y shape: %s)", x.shape(), y.shape());
Preconditions.checkArgument(x.equalShapes(z), "When no dimensions are provided, X and Z (result) shapes must be" +
" equal (x shape: %s, z shape: %s)", x.shape(), z.shape() );
}
/**
* Validate the broadcast dimensions for manual broadcast ops such as {@link BroadcastMulOp}.
* Here, the dimensions are those that the arrays match on WRT X.
* For example, mul([a,b,c], [a,c], 0,2)
*/
public static void validateBroadcastDims(INDArray x, INDArray y, INDArray z, int... dimensions){
Preconditions.checkArgument(x == z || x.equalShapes(z), "X and Z arrays must be equal shape. X shape: %s, Z shape: %s",
x.shape(), z.shape());
long[] sx = x.shape();
long[] sy = y.shape();
//Possibility 1: equal ranks - dimensions must match
if(dimensions.length == 1 && sy.length == 2 && (sy[0] == 1 || sy[1] == 1)) {
//Edge case: x=[a,b,c], y=[1,b], dim=1 etc
int d2 = dimensions[0] < 0 ? dimensions[0] + sx.length : dimensions[0]; //Handle negative dimensions
if (sy[0] == 1) {
Preconditions.checkState(sx[d2] == sy[1], "Shapes do not match: dimensions[0] - x[%s] must match y[%s], x shape %s, y shape %s, dimensions %s",
dimensions[0], 1, sx, sy, dimensions);
} else {
Preconditions.checkState(sx[d2] == sy[0], "Shapes do not match: dimensions[0] - x[%s] must match y[%s], x shape %s, y shape %s, dimensions %s",
dimensions[0], 0, sx, sy, dimensions);
}
} else if(sx.length == sy.length){
for(int d : dimensions){
int d2 = d < 0 ? d + sx.length : d; //Handle negative dimensions
Preconditions.checkState(sx[d2] == sy[d2], "Dimensions mismatch on dimension %s: x shape %s, y shape %s", d, sx, sy);
}
} else if(dimensions.length == sy.length) {
//Possibility 2: different ranks - for example, mul([a,b,c],[a,c], [0,2]) - dimensions refer to x
for (int i = 0; i < dimensions.length; i++) {
int d2 = dimensions[i] < 0 ? dimensions[i] + sx.length : dimensions[i]; //Handle negative dimensions
Preconditions.checkState(sx[d2] == sy[i], "Shapes do not match: dimensions[%s] - x[%s] must match y[%s], x shape %s, y shape %s, dimensions %s",
i, d2, i, sx, sy, dimensions);
}
} else {
throw new IllegalStateException("Invalid broadcast dimensions: x shape " + Arrays.toString(sx) + ", y shape " + Arrays.toString(sy)
+ ", dimensions " + Arrays.toString(dimensions));
}
}
}