Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*******************************************************************************
* Copyright (c) 2019-2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//================== GENERATED CODE - DO NOT MODIFY THIS FILE ==================
package org.nd4j.linalg.factory.ops;
import static org.nd4j.linalg.factory.NDValidation.isSameType;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.NDValidation;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.conditions.Condition;
public class NDBase {
public NDBase() {
}
/**
* Boolean and array reduction operation, optionally along specified dimensions
*
* @param x Input variable (NDARRAY type)
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output reduced array of rank (input rank - num dimensions) (BOOL type)
*/
public INDArray all(INDArray x, int... dimensions) {
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.bool.All(x, dimensions));
}
/**
* Boolean or array reduction operation, optionally along specified dimensions
*
* @param x Input variable (NDARRAY type)
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output reduced array of rank (input rank - num dimensions) (BOOL type)
*/
public INDArray any(INDArray x, int... dimensions) {
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.bool.Any(x, dimensions));
}
/**
* Argmax array reduction operation, optionally along specified dimensions.
* Output values are the index of the maximum value of each slice along the specified dimension.
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param in Input variable (NUMERIC type)
* @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or
* of rank (input rank) if keepdims = true (NUMERIC type)
*/
public INDArray argmax(INDArray in, boolean keepDims, int... dimensions) {
NDValidation.validateNumerical("argmax", "in", in);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.indexaccum.IMax(in, keepDims, dimensions));
}
/**
* Argmax array reduction operation, optionally along specified dimensions.
* Output values are the index of the maximum value of each slice along the specified dimension.
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param in Input variable (NUMERIC type)
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or
* of rank (input rank) if keepdims = true (NUMERIC type)
*/
public INDArray argmax(INDArray in, int... dimensions) {
NDValidation.validateNumerical("argmax", "in", in);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.indexaccum.IMax(in, false, dimensions));
}
/**
* Argmin array reduction operation, optionally along specified dimensions.
* Output values are the index of the minimum value of each slice along the specified dimension.
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
*
* @param in Input variable (NUMERIC type)
* @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or of rank (input rank) if keepdims = true (NUMERIC type)
*/
public INDArray argmin(INDArray in, boolean keepDims, int... dimensions) {
NDValidation.validateNumerical("argmin", "in", in);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.indexaccum.IMin(in, keepDims, dimensions));
}
/**
* Argmin array reduction operation, optionally along specified dimensions.
* Output values are the index of the minimum value of each slice along the specified dimension.
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
*
* @param in Input variable (NUMERIC type)
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or of rank (input rank) if keepdims = true (NUMERIC type)
*/
public INDArray argmin(INDArray in, int... dimensions) {
NDValidation.validateNumerical("argmin", "in", in);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.indexaccum.IMin(in, false, dimensions));
}
/**
* Matrix multiply a batch of matrices. matricesA and matricesB have to be arrays of same
* length and each pair taken from these sets has to have dimensions (M, N) and (N, K),
* respectively. If transposeA is true, matrices from matricesA will have shape (N, M) instead.
* Likewise, if transposeB is true, matrices from matricesB will have shape (K, N).
*
* The result of this operation will be a batch of multiplied matrices. The
* result has the same length as both input batches and each output matrix is of shape (M, K).
*
* @param inputsA First array of input matrices, all of shape (M, N) or (N, M) (NUMERIC type)
* @param inputsB Second array of input matrices, all of shape (N, K) or (K, N) (NUMERIC type)
* @param transposeA Whether to transpose A arrays or not
* @param transposeB Whether to transpose B arrays or not
*/
public INDArray[] batchMmul(INDArray[] inputsA, INDArray[] inputsB, boolean transposeA,
boolean transposeB) {
NDValidation.validateNumerical("batchMmul", "inputsA", inputsA);
Preconditions.checkArgument(inputsA.length >= 1, "inputsA has incorrect size/length. Expected: inputsA.length >= 1, got %s", inputsA.length);
NDValidation.validateNumerical("batchMmul", "inputsB", inputsB);
Preconditions.checkArgument(inputsB.length >= 1, "inputsB has incorrect size/length. Expected: inputsB.length >= 1, got %s", inputsB.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.custom.BatchMmul(inputsA, inputsB, transposeA, transposeB));
}
/**
* Matrix multiply a batch of matrices. matricesA and matricesB have to be arrays of same
* length and each pair taken from these sets has to have dimensions (M, N) and (N, K),
* respectively. If transposeA is true, matrices from matricesA will have shape (N, M) instead.
* Likewise, if transposeB is true, matrices from matricesB will have shape (K, N).
*
* The result of this operation will be a batch of multiplied matrices. The
* result has the same length as both input batches and each output matrix is of shape (M, K).
*
* @param inputsA First array of input matrices, all of shape (M, N) or (N, M) (NUMERIC type)
* @param inputsB Second array of input matrices, all of shape (N, K) or (K, N) (NUMERIC type)
*/
public INDArray[] batchMmul(INDArray[] inputsA, INDArray... inputsB) {
NDValidation.validateNumerical("batchMmul", "inputsA", inputsA);
Preconditions.checkArgument(inputsA.length >= 1, "inputsA has incorrect size/length. Expected: inputsA.length >= 1, got %s", inputsA.length);
NDValidation.validateNumerical("batchMmul", "inputsB", inputsB);
Preconditions.checkArgument(inputsB.length >= 1, "inputsB has incorrect size/length. Expected: inputsB.length >= 1, got %s", inputsB.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.custom.BatchMmul(inputsA, inputsB, false, false));
}
/**
* Cast the array to a new datatype - for example, Integer -> Float
*
* @param arg Input variable to cast (NDARRAY type)
* @param datatype Datatype to cast to
* @return output Output array (after casting) (NDARRAY type)
*/
public INDArray castTo(INDArray arg, DataType datatype) {
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.dtype.Cast(arg, datatype))[0];
}
/**
* Concatenate a set of inputs along the specified dimension.
* Note that inputs must have identical rank and identical dimensions, other than the dimension to stack on.
* For example, if 2 inputs have shape [a, x, c] and [a, y, c] and dimension = 1, then the output has shape [a, x+y, c]
*
* Inputs must satisfy the following constraints:
* Input arrays must all be the same datatype: isSameType(inputs)
*
* @param inputs Input variables (NUMERIC type)
* @param dimension Dimension to concatenate on
* @return output (NUMERIC type)
*/
public INDArray concat(int dimension, INDArray... inputs) {
NDValidation.validateNumerical("concat", "inputs", inputs);
Preconditions.checkArgument(inputs.length >= 1, "inputs has incorrect size/length. Expected: inputs.length >= 1, got %s", inputs.length);
Preconditions.checkArgument(isSameType(inputs), "Input arrays must all be the same datatype");
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Concat(inputs, dimension))[0];
}
/**
* Cumulative product operation.
* For input: [ a, b, c], output is:
* exclusive=false, reverse=false: [a, a*b, a*b*c]
* exclusive=true, reverse=false, [0, a, a*b]
* exclusive=false, reverse=true: [a*b*c, b*c, c]
* exclusive=true, reverse=true: [b*c, c, 0]
*
* @param in Input variable (NUMERIC type)
* @param exclusive If true: exclude the first value
* @param reverse If true: reverse the direction of the accumulation
* @param axis Scalar axis argument for dimension to perform cumululative sum operations along (Size: AtLeast(min=1))
* @return output Output variable (NUMERIC type)
*/
public INDArray cumprod(INDArray in, boolean exclusive, boolean reverse, int... axis) {
NDValidation.validateNumerical("cumprod", "in", in);
Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.CumProd(in, exclusive, reverse, axis))[0];
}
/**
* Cumulative product operation.
* For input: [ a, b, c], output is:
* exclusive=false, reverse=false: [a, a*b, a*b*c]
* exclusive=true, reverse=false, [0, a, a*b]
* exclusive=false, reverse=true: [a*b*c, b*c, c]
* exclusive=true, reverse=true: [b*c, c, 0]
*
* @param in Input variable (NUMERIC type)
* @param axis Scalar axis argument for dimension to perform cumululative sum operations along (Size: AtLeast(min=1))
* @return output Output variable (NUMERIC type)
*/
public INDArray cumprod(INDArray in, int... axis) {
NDValidation.validateNumerical("cumprod", "in", in);
Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.CumProd(in, false, false, axis))[0];
}
/**
* Cumulative sum operation.
* For input: [ a, b, c], output is:
* exclusive=false, reverse=false: [a, a+b, a+b+c]
* exclusive=true, reverse=false, [0, a, a+b]
* exclusive=false, reverse=true: [a+b+c, b+c, c]
* exclusive=true, reverse=true: [b+c, c, 0]
*
* @param in Input variable (NUMERIC type)
* @param exclusive If true: exclude the first value
* @param reverse If true: reverse the direction of the accumulation
* @param axis Scalar axis argument for dimension to perform cumululative sum operations along (Size: AtLeast(min=1))
* @return output (NUMERIC type)
*/
public INDArray cumsum(INDArray in, boolean exclusive, boolean reverse, int... axis) {
NDValidation.validateNumerical("cumsum", "in", in);
Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.CumSum(in, exclusive, reverse, axis))[0];
}
/**
* Cumulative sum operation.
* For input: [ a, b, c], output is:
* exclusive=false, reverse=false: [a, a+b, a+b+c]
* exclusive=true, reverse=false, [0, a, a+b]
* exclusive=false, reverse=true: [a+b+c, b+c, c]
* exclusive=true, reverse=true: [b+c, c, 0]
*
* @param in Input variable (NUMERIC type)
* @param axis Scalar axis argument for dimension to perform cumululative sum operations along (Size: AtLeast(min=1))
* @return output (NUMERIC type)
*/
public INDArray cumsum(INDArray in, int... axis) {
NDValidation.validateNumerical("cumsum", "in", in);
Preconditions.checkArgument(axis.length >= 1, "axis has incorrect size/length. Expected: axis.length >= 1, got %s", axis.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.CumSum(in, false, false, axis))[0];
}
/**
* Pairwise dot product reduction along dimension
* output = sum(i=0 ... size(dim)-1) x[i] * y[i]
*
* @param x first input (NUMERIC type)
* @param y second input (NUMERIC type)
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output output variable (NUMERIC type)
*/
public INDArray dot(INDArray x, INDArray y, int... dimensions) {
NDValidation.validateNumerical("dot", "x", x);
NDValidation.validateNumerical("dot", "y", y);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce3.Dot(x, y, dimensions));
}
/**
* Dynamically partition the input variable values into the specified number of paritions, using the indices.
* Example:
*
*
* @param x Input variable (NUMERIC type)
* @param partitions 1D input with values 0 to numPartitions-1 (INT type)
* @param numPartitions Number of partitions, >= 1
*/
public INDArray[] dynamicPartition(INDArray x, INDArray partitions, int numPartitions) {
NDValidation.validateNumerical("dynamicPartition", "x", x);
NDValidation.validateInteger("dynamicPartition", "partitions", partitions);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.DynamicPartition(x, partitions, numPartitions));
}
/**
* Dynamically merge the specified input arrays into a single array, using the specified indices
*
* @param indices Indices to use when merging. Must be >= 1, same length as input variables (INT type)
* @param x Input variables. (NUMERIC type)
* @return output Merged output variable (NUMERIC type)
*/
public INDArray dynamicStitch(INDArray[] indices, INDArray... x) {
NDValidation.validateInteger("dynamicStitch", "indices", indices);
Preconditions.checkArgument(indices.length >= 1, "indices has incorrect size/length. Expected: indices.length >= 1, got %s", indices.length);
NDValidation.validateNumerical("dynamicStitch", "x", x);
Preconditions.checkArgument(x.length >= 1, "x has incorrect size/length. Expected: x.length >= 1, got %s", x.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.DynamicStitch(indices, x))[0];
}
/**
* Equals operation: elementwise x == y
*
* Return boolean array with values true where satisfied, or false otherwise.
*
* @param x Input array (NUMERIC type)
* @param y Double value argument to use in operation
* @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type)
*/
public INDArray eq(INDArray x, double y) {
NDValidation.validateNumerical("eq", "x", x);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarEquals(x, y));
}
/**
* Equal to operation: elementwise x == y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
*
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
*
* Return boolean array with values true where satisfied, or false otherwise.
*
* @param x Input 1 (NUMERIC type)
* @param y Input 2 (NUMERIC type)
* @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type)
*/
public INDArray eq(INDArray x, INDArray y) {
NDValidation.validateNumerical("eq", "x", x);
NDValidation.validateNumerical("eq", "y", y);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.EqualTo(x, y))[0];
}
/**
* Reshape the input by adding a 1 at the specified location.
* For example, if input has shape [a, b], then output shape is:
* axis = 0: [1, a, b]
* axis = 1: [a, 1, b]
* axis = 2: [a, b, 1]
*
* @param x Input variable (NDARRAY type)
* @param axis Axis to expand
* @return output Output variable (NUMERIC type)
*/
public INDArray expandDims(INDArray x, int axis) {
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.ExpandDims(x, axis))[0];
}
/**
* Generate an output variable with the specified (dynamic) shape with all elements set to the specified value
*
* @param shape Shape: must be a 1D array/variable (INT type)
* @param dataType Datatype of the output array
* @param value Value to set all elements to
* @return output Output variable (NUMERIC type)
*/
public INDArray fill(INDArray shape, DataType dataType, double value) {
NDValidation.validateInteger("fill", "shape", shape);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.Fill(shape, dataType, value))[0];
}
/**
* Gather slices from the input variable where the indices are specified as fixed int[] values.
* Output shape is same as input shape, except for axis dimension, which has size equal to indices.length.
*
* @param df Input variable (NUMERIC type)
* @param indices Indices to get (Size: AtLeast(min=1))
* @param axis Axis that the indices refer to
* @return output Output variable with slices pulled from the specified axis (NUMERIC type)
*/
public INDArray gather(INDArray df, int[] indices, int axis) {
NDValidation.validateNumerical("gather", "df", df);
Preconditions.checkArgument(indices.length >= 1, "indices has incorrect size/length. Expected: indices.length >= 1, got %s", indices.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Gather(df, indices, axis))[0];
}
/**
* Gather slices from the input variable where the indices are specified as dynamic array values.
* Output shape is same as input shape, except for axis dimension, which has size equal to indices.length.
*
* @param df Input variable (NUMERIC type)
* @param indices Indices to get slices for. Rank 0 or 1 input (INT type)
* @param axis Axis that the indices refer to
* @return output Output variable with slices pulled from the specified axis (NUMERIC type)
*/
public INDArray gather(INDArray df, INDArray indices, int axis) {
NDValidation.validateNumerical("gather", "df", df);
NDValidation.validateInteger("gather", "indices", indices);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Gather(df, indices, axis))[0];
}
/**
* Gather slices from df with shape specified by indices.
*
* @param df (NUMERIC type)
* @param indices (NUMERIC type)
* @return output (NUMERIC type)
*/
public INDArray gatherNd(INDArray df, INDArray indices) {
NDValidation.validateNumerical("gatherNd", "df", df);
NDValidation.validateNumerical("gatherNd", "indices", indices);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.GatherNd(df, indices))[0];
}
/**
* Greater than operation: elementwise x > y
*
* Return boolean array with values true where satisfied, or false otherwise.
*
* @param x Input array (NUMERIC type)
* @param y Double value argument to use in operation
* @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type)
*/
public INDArray gt(INDArray x, double y) {
NDValidation.validateNumerical("gt", "x", x);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarGreaterThan(x, y));
}
/**
* Greater than operation: elementwise x > y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
*
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
*
* Return boolean array with values true where satisfied, or false otherwise.
*
* @param x Input 1 (NUMERIC type)
* @param y Input 2 (NUMERIC type)
* @return output Output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type)
*/
public INDArray gt(INDArray x, INDArray y) {
NDValidation.validateNumerical("gt", "x", x);
NDValidation.validateNumerical("gt", "y", y);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.GreaterThan(x, y))[0];
}
/**
* Greater than or equals operation: elementwise x >= y
*
* Return boolean array with values true where satisfied, or false otherwise.
*
* @param x Input array (NUMERIC type)
* @param y Double value argument to use in operation
* @return output Output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type)
*/
public INDArray gte(INDArray x, double y) {
NDValidation.validateNumerical("gte", "x", x);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarGreaterThanOrEqual(x, y));
}
/**
* Greater than or equal to operation: elementwise x >= y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
*
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
*
* Return boolean array with values true where satisfied, or false otherwise.
*
* @param x Input 1 (NUMERIC type)
* @param y Input 2 (NUMERIC type)
* @return output (NUMERIC type)
*/
public INDArray gte(INDArray x, INDArray y) {
NDValidation.validateNumerical("gte", "x", x);
NDValidation.validateNumerical("gte", "y", y);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.GreaterThanOrEqual(x, y))[0];
}
/**
* Elementwise identity operation: out = x
*
* @param input Input variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public INDArray identity(INDArray input) {
NDValidation.validateNumerical("identity", "input", input);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.same.Identity(input))[0];
}
/**
* Compute the inverse permutation indices for a permutation operation
* Example: if input is [2, 0, 1] then output is [1, 2, 0]
* The idea is that x.permute(input).permute(invertPermutation(input)) == x
*
* @param input 1D indices for permutation (INT type)
* @return output 1D inverted permutation (INT type)
*/
public INDArray invertPermutation(INDArray input) {
NDValidation.validateInteger("invertPermutation", "input", input);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.InvertPermutation(input))[0];
}
/**
* Is the director a numeric tensor? In the current version of ND4J/SameDiff, this always returns true/1
*
* @param x Input variable (NUMERIC type)
* @return output scalar boolean with value true or false (NDARRAY type)
*/
public INDArray isNumericTensor(INDArray x) {
NDValidation.validateNumerical("isNumericTensor", "x", x);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.IsNumericTensor(x))[0];
}
/**
* Create a new 1d array with values evenly spaced between values 'start' and 'stop'
* For example, linspace(start=3.0, stop=4.0, number=3) will generate [3.0, 3.5, 4.0]
*
* @param dataType Data type of the output array
* @param start Start value
* @param stop Stop value
* @param number Number of values to generate
* @return output INDArray with linearly spaced elements (NUMERIC type)
*/
public INDArray linspace(DataType dataType, double start, double stop, long number) {
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Linspace(dataType, start, stop, number))[0];
}
/**
* Create a new 1d array with values evenly spaced between values 'start' and 'stop'
* For example, linspace(start=3.0, stop=4.0, number=3) will generate [3.0, 3.5, 4.0]
*
* @param start Start value (NUMERIC type)
* @param stop Stop value (NUMERIC type)
* @param number Number of values to generate (LONG type)
* @param dataType Data type of the output array
* @return output INDArray with linearly spaced elements (NUMERIC type)
*/
public INDArray linspace(INDArray start, INDArray stop, INDArray number, DataType dataType) {
NDValidation.validateNumerical("linspace", "start", start);
NDValidation.validateNumerical("linspace", "stop", stop);
NDValidation.validateInteger("linspace", "number", number);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Linspace(start, stop, number, dataType))[0];
}
/**
* Less than operation: elementwise x < y
*
* Return boolean array with values true where satisfied, or false otherwise.
*
* @param x Input array (NUMERIC type)
* @param y Double value argument to use in operation
* @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type)
*/
public INDArray lt(INDArray x, double y) {
NDValidation.validateNumerical("lt", "x", x);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarLessThan(x, y));
}
/**
* Less than operation: elementwise x < y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
*
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
*
* Return boolean array with values true where satisfied, or false otherwise.
*
* @param x Input 1 (NUMERIC type)
* @param y Input 2 (NUMERIC type)
* @return output Output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type)
*/
public INDArray lt(INDArray x, INDArray y) {
NDValidation.validateNumerical("lt", "x", x);
NDValidation.validateNumerical("lt", "y", y);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.LessThan(x, y))[0];
}
/**
* Less than or equals operation: elementwise x <= y
*
* Return boolean array with values true where satisfied, or false otherwise.
*
* @param x Input array (NUMERIC type)
* @param y Double value argument to use in operation
* @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type)
*/
public INDArray lte(INDArray x, double y) {
NDValidation.validateNumerical("lte", "x", x);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarLessThanOrEqual(x, y));
}
/**
* Less than or equal to operation: elementwise x <= y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
*
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
*
* Return boolean array with values true where satisfied, or false otherwise.
*
* @param x Input 1 (NUMERIC type)
* @param y Input 2 (NUMERIC type)
* @return output Output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type)
*/
public INDArray lte(INDArray x, INDArray y) {
NDValidation.validateNumerical("lte", "x", x);
NDValidation.validateNumerical("lte", "y", y);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.LessThanOrEqual(x, y))[0];
}
/**
* Returns a boolean mask of equal shape to the input, where the condition is satisfied - value 1 where satisfied, 0 otherwise
*
* @param in Input (NUMERIC type)
* @param condition Condition
* @return output Boolean mask (NUMERIC type)
*/
public INDArray matchCondition(INDArray in, Condition condition) {
NDValidation.validateNumerical("matchCondition", "in", in);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.bool.MatchConditionTransform(in, condition));
}
/**
* Returns a count of the number of elements that satisfy the condition
*
* @param in Input (NUMERIC type)
* @param condition Condition
* @return output Number of elements that the condition is satisfied for (NUMERIC type)
*/
public INDArray matchConditionCount(INDArray in, Condition condition) {
NDValidation.validateNumerical("matchConditionCount", "in", in);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.longer.MatchCondition(in, condition));
}
/**
* Returns a count of the number of elements that satisfy the condition (for each slice along the specified dimensions)
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param in Input variable (NUMERIC type)
* @param condition Condition
* @param keepDim If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output Number of elements that the condition is satisfied for (NUMERIC type)
*/
public INDArray matchConditionCount(INDArray in, Condition condition, boolean keepDim,
int... dimensions) {
NDValidation.validateNumerical("matchConditionCount", "in", in);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.longer.MatchCondition(in, condition, keepDim, dimensions));
}
/**
* Returns a count of the number of elements that satisfy the condition (for each slice along the specified dimensions)
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param in Input variable (NUMERIC type)
* @param condition Condition
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output Number of elements that the condition is satisfied for (NUMERIC type)
*/
public INDArray matchConditionCount(INDArray in, Condition condition, int... dimensions) {
NDValidation.validateNumerical("matchConditionCount", "in", in);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.longer.MatchCondition(in, condition, false, dimensions));
}
/**
* Max array reduction operation, optionally along specified dimensions
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type)
*/
public INDArray max(INDArray x, boolean keepDims, int... dimensions) {
NDValidation.validateNumerical("max", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.same.Max(x, keepDims, dimensions));
}
/**
* Max array reduction operation, optionally along specified dimensions
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type)
*/
public INDArray max(INDArray x, int... dimensions) {
NDValidation.validateNumerical("max", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.same.Max(x, false, dimensions));
}
/**
* Element-wise maximum operation: out[i] = max(first[i], second[i])
*
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
*
* @param first First input array (NUMERIC type)
* @param second Second input array (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public INDArray max(INDArray first, INDArray second) {
NDValidation.validateNumerical("max", "first", first);
NDValidation.validateNumerical("max", "second", second);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.Max(first, second))[0];
}
/**
* Mean (average) array reduction operation, optionally along specified dimensions
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type)
*/
public INDArray mean(INDArray x, boolean keepDims, int... dimensions) {
NDValidation.validateNumerical("mean", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.Mean(x, keepDims, dimensions));
}
/**
* Mean (average) array reduction operation, optionally along specified dimensions
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type)
*/
public INDArray mean(INDArray x, int... dimensions) {
NDValidation.validateNumerical("mean", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.Mean(x, false, dimensions));
}
/**
* The merge operation is a control operation that forwards the either of the inputs to the output, when
* the first of them becomes available. If both are available, the output is undefined (either input could
* be forwarded to the output)
*
* @param x Input variable (NUMERIC type)
* @param y Input variable (NUMERIC type)
* @return output Output (NUMERIC type)
*/
public INDArray merge(INDArray x, INDArray y) {
NDValidation.validateNumerical("merge", "x", x);
NDValidation.validateNumerical("merge", "y", y);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.controlflow.compat.Merge(x, y))[0];
}
/**
* Minimum array reduction operation, optionally along specified dimensions. out = min(in)
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type)
*/
public INDArray min(INDArray x, boolean keepDims, int... dimensions) {
NDValidation.validateNumerical("min", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.same.Min(x, keepDims, dimensions));
}
/**
* Minimum array reduction operation, optionally along specified dimensions. out = min(in)
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output Reduced array of rank (input rank - num dimensions) (NUMERIC type)
*/
public INDArray min(INDArray x, int... dimensions) {
NDValidation.validateNumerical("min", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.same.Min(x, false, dimensions));
}
/**
* Element-wise minimum operation: out[i] = min(first[i], second[i])
*
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
*
* @param first First input array (NUMERIC type)
* @param second Second input array (NUMERIC type)
* @return output Second input array (NUMERIC type)
*/
public INDArray min(INDArray first, INDArray second) {
NDValidation.validateNumerical("min", "first", first);
NDValidation.validateNumerical("min", "second", second);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.Min(first, second))[0];
}
/**
* Matrix multiplication: out = mmul(x,y)
* Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.
*
* @param x First input variable (NUMERIC type)
* @param y Second input variable (NUMERIC type)
* @param transposeX Transpose x (first argument)
* @param transposeY Transpose y (second argument)
* @param transposeZ Transpose result array
* @return output (NUMERIC type)
*/
public INDArray mmul(INDArray x, INDArray y, boolean transposeX, boolean transposeY,
boolean transposeZ) {
NDValidation.validateNumerical("mmul", "x", x);
NDValidation.validateNumerical("mmul", "y", y);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.Mmul(x, y, transposeX, transposeY, transposeZ))[0];
}
/**
* Matrix multiplication: out = mmul(x,y)
* Supports specifying transpose argument to perform operation such as mmul(a^T, b), etc.
*
* @param x First input variable (NUMERIC type)
* @param y Second input variable (NUMERIC type)
* @return output (NUMERIC type)
*/
public INDArray mmul(INDArray x, INDArray y) {
NDValidation.validateNumerical("mmul", "x", x);
NDValidation.validateNumerical("mmul", "y", y);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.Mmul(x, y, false, false, false))[0];
}
/**
* Not equals operation: elementwise x != y
*
* Return boolean array with values true where satisfied, or false otherwise.
*
* @param x Input array (NUMERIC type)
* @param y Double value argument to use in operation
* @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type)
*/
public INDArray neq(INDArray x, double y) {
NDValidation.validateNumerical("neq", "x", x);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarNotEquals(x, y));
}
/**
* Not equal to operation: elementwise x != y
* If x and y arrays have equal shape, the output shape is the same as these inputs.
*
* Note: supports broadcasting if x and y have different shapes and are broadcastable.
* For example, if X has shape [1,10] and Y has shape [5,10] then op(X,Y) has output shape [5,10]
* Broadcast rules are the same as NumPy: https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
*
* Return boolean array with values true where satisfied, or false otherwise.
*
* @param x Input 1 (NUMERIC type)
* @param y Input 2 (NUMERIC type)
* @return output Boolean array out, with values true/false based on where the condition is satisfied (NUMERIC type)
*/
public INDArray neq(INDArray x, INDArray y) {
NDValidation.validateNumerical("neq", "x", x);
NDValidation.validateNumerical("neq", "y", y);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.NotEqualTo(x, y))[0];
}
/**
* Norm1 (L1 norm) reduction operation: The output contains the L1 norm for each tensor/subset along the specified dimensions:
* out = sum_i abs(x[i])
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions
* @param dimensions dimensions to reduce over (Size: AtLeast(min=0))
* @return output Output variable (NUMERIC type)
*/
public INDArray norm1(INDArray x, boolean keepDims, int... dimensions) {
NDValidation.validateNumerical("norm1", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.Norm1(x, keepDims, dimensions));
}
/**
* Norm1 (L1 norm) reduction operation: The output contains the L1 norm for each tensor/subset along the specified dimensions:
* out = sum_i abs(x[i])
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param dimensions dimensions to reduce over (Size: AtLeast(min=0))
* @return output Output variable (NUMERIC type)
*/
public INDArray norm1(INDArray x, int... dimensions) {
NDValidation.validateNumerical("norm1", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.Norm1(x, false, dimensions));
}
/**
* Norm2 (L2 norm) reduction operation: The output contains the L2 norm for each tensor/subset along the specified dimensions:
* out = sqrt(sum_i x[i]^2)
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions
* @param dimensions dimensions dimensions to reduce over (Size: AtLeast(min=0))
* @return output Output variable (NUMERIC type)
*/
public INDArray norm2(INDArray x, boolean keepDims, int... dimensions) {
NDValidation.validateNumerical("norm2", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.Norm2(x, keepDims, dimensions));
}
/**
* Norm2 (L2 norm) reduction operation: The output contains the L2 norm for each tensor/subset along the specified dimensions:
* out = sqrt(sum_i x[i]^2)
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param dimensions dimensions dimensions to reduce over (Size: AtLeast(min=0))
* @return output Output variable (NUMERIC type)
*/
public INDArray norm2(INDArray x, int... dimensions) {
NDValidation.validateNumerical("norm2", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.Norm2(x, false, dimensions));
}
/**
* Max norm (infinity norm) reduction operation: The output contains the max norm for each tensor/subset along the
* specified dimensions:
* out = max(abs(x[i]))
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions
* @param dimensions dimensions to reduce over (Size: AtLeast(min=0))
* @return output Output variable (NUMERIC type)
*/
public INDArray normmax(INDArray x, boolean keepDims, int... dimensions) {
NDValidation.validateNumerical("normmax", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.NormMax(x, keepDims, dimensions));
}
/**
* Max norm (infinity norm) reduction operation: The output contains the max norm for each tensor/subset along the
* specified dimensions:
* out = max(abs(x[i]))
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param dimensions dimensions to reduce over (Size: AtLeast(min=0))
* @return output Output variable (NUMERIC type)
*/
public INDArray normmax(INDArray x, int... dimensions) {
NDValidation.validateNumerical("normmax", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.NormMax(x, false, dimensions));
}
/**
* Convert the array to a one-hot array with walues and for each entry
* If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
* with {out[i, ..., j, in[i,...,j]] with other values being set to
*
* @param indices Indices - value 0 to depth-1 (NUMERIC type)
* @param depth Number of classes
* @param axis
* @param on
* @param off
* @param dataType Output data type
* @return output Output variable (NUMERIC type)
*/
public INDArray oneHot(INDArray indices, int depth, int axis, double on, double off,
DataType dataType) {
NDValidation.validateNumerical("oneHot", "indices", indices);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.OneHot(indices, depth, axis, on, off, dataType))[0];
}
/**
* Convert the array to a one-hot array with walues and for each entry
* If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
* with {out[i, ..., j, in[i,...,j]] with other values being set to
*
* @param indices Indices - value 0 to depth-1 (NUMERIC type)
* @param depth Number of classes
* @param axis
* @param on
* @param off
* @return output Output variable (NUMERIC type)
*/
public INDArray oneHot(INDArray indices, int depth, int axis, double on, double off) {
NDValidation.validateNumerical("oneHot", "indices", indices);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.OneHot(indices, depth, axis, on, off, DataType.FLOAT))[0];
}
/**
* Convert the array to a one-hot array with walues 0 and 1 for each entry
* If input has shape [ a, ..., n] then output has shape [ a, ..., n, depth],
* with out[i, ..., j, in[i,...,j]] = 1 with other values being set to 0
* see oneHot(SDVariable, int, int, double, double)
*
* @param indices Indices - value 0 to depth-1 (NUMERIC type)
* @param depth Number of classes
* @return output Output variable (NUMERIC type)
*/
public INDArray oneHot(INDArray indices, int depth) {
NDValidation.validateNumerical("oneHot", "indices", indices);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.OneHot(indices, depth))[0];
}
/**
* Return a variable of all 1s, with the same shape as the input variable. Note that this is dynamic:
* if the input shape changes in later execution, the returned variable's shape will also be updated
*
* @param input Input INDArray (NUMERIC type)
* @return output A new INDArray with the same (dynamic) shape as the input (NUMERIC type)
*/
public INDArray onesLike(INDArray input) {
NDValidation.validateNumerical("onesLike", "input", input);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.OnesLike(input))[0];
}
/**
* As per onesLike(String, SDVariable) but the output datatype may be specified
*
* @param input (NUMERIC type)
* @param dataType
* @return output (NUMERIC type)
*/
public INDArray onesLike(INDArray input, DataType dataType) {
NDValidation.validateNumerical("onesLike", "input", input);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.OnesLike(input, dataType))[0];
}
/**
* Array permutation operation: permute the dimensions according to the specified permutation indices.
* Example: if input has shape [a,b,c] and dimensions = [2,0,1] the output has shape [c,a,b]
*
* @param x Input variable (NUMERIC type)
* @param dimensions Permute dimensions (INT type)
* @return output Output variable (permuted input) (NUMERIC type)
*/
public INDArray permute(INDArray x, INDArray dimensions) {
NDValidation.validateNumerical("permute", "x", x);
NDValidation.validateInteger("permute", "dimensions", dimensions);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Permute(x, dimensions))[0];
}
/**
* Array permutation operation: permute the dimensions according to the specified permutation indices.
* Example: if input has shape [a,b,c] and dimensions = [2,0,1] the output has shape [c,a,b]
*
* @param x Input variable (NUMERIC type)
* @param dimensions (Size: AtLeast(min=0))
* @return output Output variable (permuted input) (NUMERIC type)
*/
public INDArray permute(INDArray x, int... dimensions) {
NDValidation.validateNumerical("permute", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Permute(x, dimensions))[0];
}
/**
* Product array reduction operation, optionally along specified dimensions
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output (NUMERIC type)
*/
public INDArray prod(INDArray x, boolean keepDims, int... dimensions) {
NDValidation.validateNumerical("prod", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.same.Prod(x, keepDims, dimensions));
}
/**
* Product array reduction operation, optionally along specified dimensions
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output (NUMERIC type)
*/
public INDArray prod(INDArray x, int... dimensions) {
NDValidation.validateNumerical("prod", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.same.Prod(x, false, dimensions));
}
/**
* Create a new variable with a 1d array, where the values start at from and increment by step
* up to (but not including) limit.
* For example, range(1.0, 3.0, 0.5) will return [1.0, 1.5, 2.0, 2.5]
*
* @param from Initial/smallest value
* @param to Largest value (exclusive)
* @param step Step size
* @param dataType
* @return output INDArray with the specified values (NUMERIC type)
*/
public INDArray range(double from, double to, double step, DataType dataType) {
return Nd4j.exec(new org.nd4j.linalg.api.ops.random.impl.Range(from, to, step, dataType))[0];
}
/**
* Create a new variable with a 1d array, where the values start at from and increment by step
* up to (but not including) limit.
* For example, range(1.0, 3.0, 0.5) will return [1.0, 1.5, 2.0, 2.5]
*
* @param from Initial/smallest value (NUMERIC type)
* @param to Largest value (exclusive) (NUMERIC type)
* @param step Step size (NUMERIC type)
* @param dataType
* @return output INDArray with the specified values (NUMERIC type)
*/
public INDArray range(INDArray from, INDArray to, INDArray step, DataType dataType) {
NDValidation.validateNumerical("range", "from", from);
NDValidation.validateNumerical("range", "to", to);
NDValidation.validateNumerical("range", "step", step);
return Nd4j.exec(new org.nd4j.linalg.api.ops.random.impl.Range(from, to, step, dataType))[0];
}
/**
* Returns the rank (number of dimensions, i.e., length(shape)) of the specified INDArray as a 0D scalar variable
*
* @param in Input variable (NUMERIC type)
* @return output (scalar) output variable with value equal to the rank of the input variable (NUMERIC type)
*/
public INDArray rank(INDArray in) {
NDValidation.validateNumerical("rank", "in", in);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Rank(in))[0];
}
/**
* Element-wise replace where condition:
* out[i] = from[i] if condition(update[i]) is satisfied, or
* out[i] = update[i] if condition(update[i]) is NOT satisfied
*
* @param update Source array (NUMERIC type)
* @param from Replacement values array (used conditionally). Must be same shape as 'update' array (NUMERIC type)
* @param condition Condition to check on update array elements
* @return output New array with values replaced where condition is satisfied (NUMERIC type)
*/
public INDArray replaceWhere(INDArray update, INDArray from, Condition condition) {
NDValidation.validateNumerical("replaceWhere", "update", update);
NDValidation.validateNumerical("replaceWhere", "from", from);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.comparison.CompareAndReplace(update, from, condition));
}
/**
* Element-wise replace where condition:
* out[i] = value if condition(update[i]) is satisfied, or
* out[i] = update[i] if condition(update[i]) is NOT satisfied
*
* @param update Source array (NUMERIC type)
* @param value Value to set at the output, if the condition is satisfied
* @param condition Condition to check on update array elements
* @return output New array with values replaced where condition is satisfied (NUMERIC type)
*/
public INDArray replaceWhere(INDArray update, double value, Condition condition) {
NDValidation.validateNumerical("replaceWhere", "update", update);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.comparison.CompareAndSet(update, value, condition));
}
/**
* Reshape the input variable to the specified (fixed) shape. The output variable will have the same values as the
* input, but with the specified shape.
* Note that prod(shape) must match length(input) == prod(input.shape)
*
* @param x Input variable (NUMERIC type)
* @param shape New shape for variable (NUMERIC type)
* @return output Output variable (NUMERIC type)
*/
public INDArray reshape(INDArray x, INDArray shape) {
NDValidation.validateNumerical("reshape", "x", x);
NDValidation.validateNumerical("reshape", "shape", shape);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Reshape(x, shape))[0];
}
/**
* Reshape the input variable to the specified (fixed) shape. The output variable will have the same values as the
* input, but with the specified shape.
* Note that prod(shape) must match length(input) == prod(input.shape)
*
* @param x Input variable (NUMERIC type)
* @param shape New shape for variable (Size: AtLeast(min=0))
* @return output Output variable (NUMERIC type)
*/
public INDArray reshape(INDArray x, long... shape) {
NDValidation.validateNumerical("reshape", "x", x);
Preconditions.checkArgument(shape.length >= 0, "shape has incorrect size/length. Expected: shape.length >= 0, got %s", shape.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Reshape(x, shape))[0];
}
/**
* Reverse the values of an array for the specified dimensions
* If input is:
* [ 1, 2, 3]
* [ 4, 5, 6]
* then
* reverse(in, 0):
* [3, 2, 1]
* [6, 5, 4]
* reverse(in, 1):
* [4, 5, 6]
* [1, 2 3]
*
* @param x Input variable (NUMERIC type)
* @param dimensions Input variable (Size: AtLeast(min=0))
* @return output Output variable (NUMERIC type)
*/
public INDArray reverse(INDArray x, int... dimensions) {
NDValidation.validateNumerical("reverse", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.Reverse(x, dimensions))[0];
}
/**
* Reverse sequence op: for each slice along dimension seqDimension, the first seqLength values are reversed
*
* @param x Input variable (NUMERIC type)
* @param seq_lengths Length of the sequences (INT type)
* @param seqDim Sequence dimension
* @param batchDim Batch dimension
* @return output Reversed sequences (NUMERIC type)
*/
public INDArray reverseSequence(INDArray x, INDArray seq_lengths, int seqDim, int batchDim) {
NDValidation.validateNumerical("reverseSequence", "x", x);
NDValidation.validateInteger("reverseSequence", "seq_lengths", seq_lengths);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.ReverseSequence(x, seq_lengths, seqDim, batchDim))[0];
}
/**
* Reverse sequence op: for each slice along dimension seqDimension, the first seqLength values are reversed
*
* @param x Input variable (NUMERIC type)
* @param seq_lengths Length of the sequences (INT type)
* @return output Reversed sequences (NUMERIC type)
*/
public INDArray reverseSequence(INDArray x, INDArray seq_lengths) {
NDValidation.validateNumerical("reverseSequence", "x", x);
NDValidation.validateInteger("reverseSequence", "seq_lengths", seq_lengths);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.ReverseSequence(x, seq_lengths, -1, 0))[0];
}
/**
* Element-wise scalar floor modulus operation: out = floorMod(in, value).
* i.e., returns the remainder after division by 'value'
*
* @param in Input variable (NUMERIC type)
* @param value Scalar value to compare
* @return output Output variable (NUMERIC type)
*/
public INDArray scalarFloorMod(INDArray in, double value) {
NDValidation.validateNumerical("scalarFloorMod", "in", in);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.ScalarFMod(in, value));
}
/**
* Element-wise scalar maximum operation: out = max(in, value)
*
* @param in Input variable (NUMERIC type)
* @param value Scalar value to compare
* @return output Scalar value to compare (NUMERIC type)
*/
public INDArray scalarMax(INDArray in, double value) {
NDValidation.validateNumerical("scalarMax", "in", in);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.ScalarMax(in, value));
}
/**
* Element-wise scalar minimum operation: out = min(in, value)
*
* @param in Input variable (NUMERIC type)
* @param value Scalar value to compare
* @return output Output variable (NUMERIC type)
*/
public INDArray scalarMin(INDArray in, double value) {
NDValidation.validateNumerical("scalarMin", "in", in);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.ScalarMin(in, value));
}
/**
* Return a variable with equal shape to the input, but all elements set to value 'set'
*
* @param in Input variable (NUMERIC type)
* @param set Value to set
* @return output Output variable (NUMERIC type)
*/
public INDArray scalarSet(INDArray in, double set) {
NDValidation.validateNumerical("scalarSet", "in", in);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scalar.ScalarSet(in, set));
}
/**
* Scatter addition operation.
*
* If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
*
* @param ref Initial/source variable (NUMERIC type)
* @param indices Indices array (NUMERIC type)
* @param updates Updates to add to the initial/source array (NUMERIC type)
* @return output The updated variable (NUMERIC type)
*/
public INDArray scatterAdd(INDArray ref, INDArray indices, INDArray updates) {
NDValidation.validateNumerical("scatterAdd", "ref", ref);
NDValidation.validateNumerical("scatterAdd", "indices", indices);
NDValidation.validateNumerical("scatterAdd", "updates", updates);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scatter.ScatterAdd(ref, indices, updates))[0];
}
/**
* Scatter division operation.
*
* If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
*
* @param ref Initial/source variable (NUMERIC type)
* @param indices Indices array (NUMERIC type)
* @param updates Updates to add to the initial/source array (NUMERIC type)
* @return output The updated variable (NUMERIC type)
*/
public INDArray scatterDiv(INDArray ref, INDArray indices, INDArray updates) {
NDValidation.validateNumerical("scatterDiv", "ref", ref);
NDValidation.validateNumerical("scatterDiv", "indices", indices);
NDValidation.validateNumerical("scatterDiv", "updates", updates);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scatter.ScatterDiv(ref, indices, updates))[0];
}
/**
* Scatter max operation.
*
* If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
*
* @param ref Initial/source variable (NUMERIC type)
* @param indices Indices array (NUMERIC type)
* @param updates Updates to add to the initial/source array (NUMERIC type)
* @return output The updated variable (NUMERIC type)
*/
public INDArray scatterMax(INDArray ref, INDArray indices, INDArray updates) {
NDValidation.validateNumerical("scatterMax", "ref", ref);
NDValidation.validateNumerical("scatterMax", "indices", indices);
NDValidation.validateNumerical("scatterMax", "updates", updates);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scatter.ScatterMax(ref, indices, updates))[0];
}
/**
* Scatter min operation.
*
* If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
*
* @param ref Initial/source variable (NUMERIC type)
* @param indices Indices array (NUMERIC type)
* @param updates Updates to add to the initial/source array (NUMERIC type)
* @return output The updated variable (NUMERIC type)
*/
public INDArray scatterMin(INDArray ref, INDArray indices, INDArray updates) {
NDValidation.validateNumerical("scatterMin", "ref", ref);
NDValidation.validateNumerical("scatterMin", "indices", indices);
NDValidation.validateNumerical("scatterMin", "updates", updates);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scatter.ScatterMin(ref, indices, updates))[0];
}
/**
* Scatter multiplication operation.
*
* If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
*
* @param ref Initial/source variable (NUMERIC type)
* @param indices Indices array (NUMERIC type)
* @param updates Updates to add to the initial/source array (NUMERIC type)
* @return output The updated variable (NUMERIC type)
*/
public INDArray scatterMul(INDArray ref, INDArray indices, INDArray updates) {
NDValidation.validateNumerical("scatterMul", "ref", ref);
NDValidation.validateNumerical("scatterMul", "indices", indices);
NDValidation.validateNumerical("scatterMul", "updates", updates);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scatter.ScatterMul(ref, indices, updates))[0];
}
/**
* Scatter subtraction operation.
*
* If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
*
* @param ref Initial/source variable (NUMERIC type)
* @param indices Indices array (NUMERIC type)
* @param updates Updates to add to the initial/source array (NUMERIC type)
* @return output The updated variable (NUMERIC type)
*/
public INDArray scatterSub(INDArray ref, INDArray indices, INDArray updates) {
NDValidation.validateNumerical("scatterSub", "ref", ref);
NDValidation.validateNumerical("scatterSub", "indices", indices);
NDValidation.validateNumerical("scatterSub", "updates", updates);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scatter.ScatterSub(ref, indices, updates))[0];
}
/**
* Scatter update operation.
*
* If indices is rank 0 (a scalar), then out[index, ...] = out[index, ...] + op(updates[...])
* If indices is rank 1 (a vector), then for each position i, out[indices[i], ...] = out[indices[i], ...] + op(updates[i, ...])
* If indices is rank 2+, then for each position (i,...,k), out[indices[i], ..., indices[k], ...] = out[indices[i], ..., indices[k], ...] + op(updates[i, ..., k, ...])
* Note that if multiple indices refer to the same location, the contributions from each is handled correctly.
*
* @param ref Initial/source variable (NUMERIC type)
* @param indices Indices array (NUMERIC type)
* @param updates Updates to add to the initial/source array (NUMERIC type)
* @return output The updated variable (NUMERIC type)
*/
public INDArray scatterUpdate(INDArray ref, INDArray indices, INDArray updates) {
NDValidation.validateNumerical("scatterUpdate", "ref", ref);
NDValidation.validateNumerical("scatterUpdate", "indices", indices);
NDValidation.validateNumerical("scatterUpdate", "updates", updates);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.scatter.ScatterUpdate(ref, indices, updates))[0];
}
/**
* Segment max operation.
*
* If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
*
* @param data Data to perform segment max on (NDARRAY type)
* @param segmentIds Variable for the segment IDs (NUMERIC type)
* @return output Segment output (NUMERIC type)
*/
public INDArray segmentMax(INDArray data, INDArray segmentIds) {
NDValidation.validateNumerical("segmentMax", "segmentIds", segmentIds);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentMax(data, segmentIds))[0];
}
/**
* Segment mean operation.
*
* If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
*
* @param data Data to perform segment max on (NDARRAY type)
* @param segmentIds Variable for the segment IDs (NUMERIC type)
* @return output Segment output (NUMERIC type)
*/
public INDArray segmentMean(INDArray data, INDArray segmentIds) {
NDValidation.validateNumerical("segmentMean", "segmentIds", segmentIds);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentMean(data, segmentIds))[0];
}
/**
* Segment min operation.
*
* If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
*
* @param data Data to perform segment max on (NDARRAY type)
* @param segmentIds Variable for the segment IDs (NUMERIC type)
* @return output Segment output (NUMERIC type)
*/
public INDArray segmentMin(INDArray data, INDArray segmentIds) {
NDValidation.validateNumerical("segmentMin", "segmentIds", segmentIds);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentMin(data, segmentIds))[0];
}
/**
* Segment product operation.
*
* If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
*
* @param data Data to perform segment max on (NDARRAY type)
* @param segmentIds Variable for the segment IDs (NUMERIC type)
* @return output Segment output (NUMERIC type)
*/
public INDArray segmentProd(INDArray data, INDArray segmentIds) {
NDValidation.validateNumerical("segmentProd", "segmentIds", segmentIds);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentProd(data, segmentIds))[0];
}
/**
* Segment sum operation.
*
* If data = [3, 6, 1, 4, 9, 2, 8]
* segmentIds = [0, 0, 1, 1, 1, 2, 2]
* then output = [6, 9, 8] = [op(3,6), op(1,4,9), op(2,8)]
* Note that the segment IDs must be sorted from smallest to largest segment.
* See {unsortedSegment (String, SDVariable, SDVariable, int) ops
* for the same op without this sorted requirement
*
* @param data Data to perform segment max on (NDARRAY type)
* @param segmentIds Variable for the segment IDs (NUMERIC type)
* @return output Segment output (NUMERIC type)
*/
public INDArray segmentSum(INDArray data, INDArray segmentIds) {
NDValidation.validateNumerical("segmentSum", "segmentIds", segmentIds);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentSum(data, segmentIds))[0];
}
/**
* Generate a sequence mask (with values 0 or 1) based on the specified lengths
* Specifically, out[i, ..., k, j] = (j < lengths[i, ..., k] ? 1.0 : 0.0)
*
* @param lengths Lengths of the sequences (NUMERIC type)
* @param maxLen Maximum sequence length
* @param dataType
* @return output Output variable (NUMERIC type)
*/
public INDArray sequenceMask(INDArray lengths, int maxLen, DataType dataType) {
NDValidation.validateNumerical("sequenceMask", "lengths", lengths);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.SequenceMask(lengths, maxLen, dataType))[0];
}
/**
* Generate a sequence mask (with values 0 or 1) based on the specified lengths
* Specifically, out[i, ..., k, j] = (j < lengths[i, ..., k] ? 1.0 : 0.0)
*
* @param lengths Lengths of the sequences (NUMERIC type)
* @param maxLen Maximum sequence length (INT type)
* @param dataType
* @return output Output variable (NUMERIC type)
*/
public INDArray sequenceMask(INDArray lengths, INDArray maxLen, DataType dataType) {
NDValidation.validateNumerical("sequenceMask", "lengths", lengths);
NDValidation.validateInteger("sequenceMask", "maxLen", maxLen);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.SequenceMask(lengths, maxLen, dataType))[0];
}
/**
* see sequenceMask(String, SDVariable, SDVariable, DataType)
*
* @param lengths (NUMERIC type)
* @param dataType
* @return output (NUMERIC type)
*/
public INDArray sequenceMask(INDArray lengths, DataType dataType) {
NDValidation.validateNumerical("sequenceMask", "lengths", lengths);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.SequenceMask(lengths, dataType))[0];
}
/**
* Returns the shape of the specified INDArray as a 1D INDArray
*
* @param input Input variable (NUMERIC type)
* @return output 1D output variable with contents equal to the shape of the input (NUMERIC type)
*/
public INDArray shape(INDArray input) {
NDValidation.validateNumerical("shape", "input", input);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Shape(input))[0];
}
/**
* Returns the size (number of elements, i.e., prod(shape)) of the specified INDArray as a 0D scalar variable
*
* @param in Input variable (NUMERIC type)
* @return output 0D (scalar) output variable with value equal to the number of elements in the specified array (NUMERIC type)
*/
public INDArray size(INDArray in) {
NDValidation.validateNumerical("size", "in", in);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Size(in))[0];
}
/**
* Returns a rank 0 (scalar) variable for the size of the specified dimension.
* For example, if X has shape [10,20,30] then sizeAt(X,1)=20. Similarly, sizeAt(X,-1)=30
*
* @param in Input variable (NUMERIC type)
* @param dimension Dimension to get size of
* @return output Scalar INDArray for size at specified variable (NUMERIC type)
*/
public INDArray sizeAt(INDArray in, int dimension) {
NDValidation.validateNumerical("sizeAt", "in", in);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.SizeAt(in, dimension))[0];
}
/**
* Get a subset of the specified input, by specifying the first element and the size of the array.
* For example, if input is:
* [a, b, c]
* [d, e, f]
* then slice(input, begin=[0,1], size=[2,1] will return:
* [b]
* [e]
* Note that for each dimension i, begin[i] + size[i] <= input.size(i)
*
* @param input input Variable to get subset of (NUMERIC type)
* @param begin Beginning index. Must be same length as rank of input array (Size: AtLeast(min=1))
* @param size Size of the output array. Must be same length as rank of input array (Size: AtLeast(min=1))
* @return output Subset of the input (NUMERIC type)
*/
public INDArray slice(INDArray input, int[] begin, int... size) {
NDValidation.validateNumerical("slice", "input", input);
Preconditions.checkArgument(begin.length >= 1, "begin has incorrect size/length. Expected: begin.length >= 1, got %s", begin.length);
Preconditions.checkArgument(size.length >= 1, "size has incorrect size/length. Expected: size.length >= 1, got %s", size.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Slice(input, begin, size))[0];
}
/**
* Get a subset of the specified input, by specifying the first element and the size of the array.
* For example, if input is:
* [a, b, c]
* [d, e, f]
* then slice(input, begin=[0,1], size=[2,1] will return:
* [b]
* [e]
* Note that for each dimension i, begin[i] + size[i] <= input.size(i)
*
* @param input input Variable to get subset of (NUMERIC type)
* @param begin Beginning index. Must be same length as rank of input array (INT type)
* @param size Size of the output array. Must be same length as rank of input array (INT type)
* @return output Subset of the input (NUMERIC type)
*/
public INDArray slice(INDArray input, INDArray begin, INDArray size) {
NDValidation.validateNumerical("slice", "input", input);
NDValidation.validateInteger("slice", "begin", begin);
NDValidation.validateInteger("slice", "size", size);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Slice(input, begin, size))[0];
}
/**
* Squared L2 norm: see norm2(String, SDVariable, boolean, int...)
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x (NUMERIC type)
* @param keepDims
* @param dimensions (Size: AtLeast(min=0))
* @return output (NUMERIC type)
*/
public INDArray squaredNorm(INDArray x, boolean keepDims, int... dimensions) {
NDValidation.validateNumerical("squaredNorm", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.SquaredNorm(x, keepDims, dimensions));
}
/**
* Squared L2 norm: see norm2(String, SDVariable, boolean, int...)
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x (NUMERIC type)
* @param dimensions (Size: AtLeast(min=0))
* @return output (NUMERIC type)
*/
public INDArray squaredNorm(INDArray x, int... dimensions) {
NDValidation.validateNumerical("squaredNorm", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.floating.SquaredNorm(x, false, dimensions));
}
/**
* Remove a single dimension of size 1.
* For example, if input has shape [a,b,1,c] then squeeze(input, 2) returns an array of shape [a,b,c]
*
* @param x Input variable (NUMERIC type)
* @param axis Size 1 dimension to remove
* @return output Output variable (NUMERIC type)
*/
public INDArray squeeze(INDArray x, int axis) {
NDValidation.validateNumerical("squeeze", "x", x);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Squeeze(x, axis))[0];
}
/**
* Stack a set of N INDArray of rank X into one rank X+1 variable.
* If inputs have shape [a,b,c] then output has shape:
* axis = 0: [N,a,b,c]
* axis = 1: [a,N,b,c]
* axis = 2: [a,b,N,c]
* axis = 3: [a,b,c,N]
* see unstack(String[], SDVariable, int, int)
*
* @param values Input variables to stack. Must have the same shape for all inputs (NDARRAY type)
* @param axis Axis to stack on
* @return output Output variable (NDARRAY type)
*/
public INDArray stack(int axis, INDArray... values) {
Preconditions.checkArgument(values.length >= 1, "values has incorrect size/length. Expected: values.length >= 1, got %s", values.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Stack(values, axis))[0];
}
/**
* Stardard deviation array reduction operation, optionally along specified dimensions
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param biasCorrected If true: divide by (N-1) (i.e., sample stdev). If false: divide by N (population stdev)
* @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output reduced array of rank (input rank - num dimensions) (NUMERIC type)
*/
public INDArray standardDeviation(INDArray x, boolean biasCorrected, boolean keepDims,
int... dimensions) {
NDValidation.validateNumerical("standardDeviation", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.summarystats.StandardDeviation(x, biasCorrected, keepDims, dimensions));
}
/**
* Stardard deviation array reduction operation, optionally along specified dimensions
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param biasCorrected If true: divide by (N-1) (i.e., sample stdev). If false: divide by N (population stdev)
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output reduced array of rank (input rank - num dimensions) (NUMERIC type)
*/
public INDArray standardDeviation(INDArray x, boolean biasCorrected, int... dimensions) {
NDValidation.validateNumerical("standardDeviation", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.summarystats.StandardDeviation(x, biasCorrected, false, dimensions));
}
/**
* Get a subset of the specified input, by specifying the first element, last element, and the strides.
* For example, if input is:
* [a, b, c]
* [d, e, f]
* [g, h, i]
* then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
* [b, c]
* [h, i]
*
* @param in Variable to get subset of (NUMERIC type)
* @param begin Beginning index (Size: AtLeast(min=1))
* @param end End index (Size: AtLeast(min=1))
* @param strides Stride ("step size") for each dimension. For example, stride of 2 means take every second element. (Size: AtLeast(min=1))
* @param beginMask Bit mask: If the ith bit is set to 1, then the value in the begin long[] is ignored, and a value of 0 is used instead for the beginning index for that dimension
* @param endMask Bit mask: If the ith bit is set to 1, then the value in the end long[] is ignored, and a value of size(i)-1 is used instead for the end index for that dimension
* @param ellipsisMask Bit mask: only one non-zero value is allowed here. If a non-zero value is set, then other dimensions are inserted as required at the specified position
* @param newAxisMask Bit mask: if the ith bit is set to 1, then the begin/end/stride values are ignored, and a size 1 dimension is inserted at this point
* @param shrinkAxisMask Bit mask: if the ith bit is set to 1, then the begin/end/stride values are ignored, and a size 1 dimension is removed at this point. Note that begin/end/stride values must result in a size 1 output for these dimensions
* @return output A subset of the input array (NUMERIC type)
*/
public INDArray stridedSlice(INDArray in, long[] begin, long[] end, long[] strides, int beginMask,
int endMask, int ellipsisMask, int newAxisMask, int shrinkAxisMask) {
NDValidation.validateNumerical("stridedSlice", "in", in);
Preconditions.checkArgument(begin.length >= 1, "begin has incorrect size/length. Expected: begin.length >= 1, got %s", begin.length);
Preconditions.checkArgument(end.length >= 1, "end has incorrect size/length. Expected: end.length >= 1, got %s", end.length);
Preconditions.checkArgument(strides.length >= 1, "strides has incorrect size/length. Expected: strides.length >= 1, got %s", strides.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.StridedSlice(in, begin, end, strides, beginMask, endMask, ellipsisMask, newAxisMask, shrinkAxisMask))[0];
}
/**
* Get a subset of the specified input, by specifying the first element, last element, and the strides.
* For example, if input is:
* [a, b, c]
* [d, e, f]
* [g, h, i]
* then stridedSlice(input, begin=[0,1], end=[2,2], strides=[2,1], all masks = 0) will return:
* [b, c]
* [h, i]
*
* @param in Variable to get subset of (NUMERIC type)
* @param begin Beginning index (Size: AtLeast(min=1))
* @param end End index (Size: AtLeast(min=1))
* @param strides Stride ("step size") for each dimension. For example, stride of 2 means take every second element. (Size: AtLeast(min=1))
* @return output A subset of the input array (NUMERIC type)
*/
public INDArray stridedSlice(INDArray in, long[] begin, long[] end, long... strides) {
NDValidation.validateNumerical("stridedSlice", "in", in);
Preconditions.checkArgument(begin.length >= 1, "begin has incorrect size/length. Expected: begin.length >= 1, got %s", begin.length);
Preconditions.checkArgument(end.length >= 1, "end has incorrect size/length. Expected: end.length >= 1, got %s", end.length);
Preconditions.checkArgument(strides.length >= 1, "strides has incorrect size/length. Expected: strides.length >= 1, got %s", strides.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.StridedSlice(in, begin, end, strides, 0, 0, 0, 0, 0))[0];
}
/**
* Sum array reduction operation, optionally along specified dimensions.
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param keepDims If true: keep the dimensions that are reduced on (as length 1). False: remove the reduction dimensions
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or of rank (input rank) if keepdims = true (NUMERIC type)
*/
public INDArray sum(INDArray x, boolean keepDims, int... dimensions) {
NDValidation.validateNumerical("sum", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.same.Sum(x, keepDims, dimensions));
}
/**
* Sum array reduction operation, optionally along specified dimensions.
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output reduced array of rank (input rank - num dimensions) if keepDims = false, or of rank (input rank) if keepdims = true (NUMERIC type)
*/
public INDArray sum(INDArray x, int... dimensions) {
NDValidation.validateNumerical("sum", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.same.Sum(x, false, dimensions));
}
/**
* Switch operation
* Predictate - if false, values are output to left (first) branch/output; if true, to right (second) branch/output
*
* @param x Input variable (NDARRAY type)
* @param predicate Predictate - if false, values are output to left (first) branch/output; if true, to right (second) branch/output (BOOL type)
*/
public INDArray[] switchOp(INDArray x, INDArray predicate) {
NDValidation.validateBool("switchOp", "predicate", predicate);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.controlflow.compat.Switch(x, predicate));
}
/**
* //TODO: Ops must be documented.
*
* @param x Input variable x (NUMERIC type)
* @param y Input variable y (NUMERIC type)
* @param dimensionsX dimensions for first input array (x) (Size: AtLeast(min=1))
* @param dimensionsY dimensions for second input array (y) (Size: AtLeast(min=1))
* @param transposeX Transpose x (first argument)
* @param transposeY Transpose y (second argument)
* @param transposeZ Transpose result array
* @return output Output variable (NUMERIC type)
*/
public INDArray tensorMmul(INDArray x, INDArray y, int[] dimensionsX, int[] dimensionsY,
boolean transposeX, boolean transposeY, boolean transposeZ) {
NDValidation.validateNumerical("tensorMmul", "x", x);
NDValidation.validateNumerical("tensorMmul", "y", y);
Preconditions.checkArgument(dimensionsX.length >= 1, "dimensionsX has incorrect size/length. Expected: dimensionsX.length >= 1, got %s", dimensionsX.length);
Preconditions.checkArgument(dimensionsY.length >= 1, "dimensionsY has incorrect size/length. Expected: dimensionsY.length >= 1, got %s", dimensionsY.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.TensorMmul(x, y, dimensionsX, dimensionsY, transposeX, transposeY, transposeZ))[0];
}
/**
* //TODO: Ops must be documented.
*
* @param x Input variable x (NUMERIC type)
* @param y Input variable y (NUMERIC type)
* @param dimensionsX dimensions for first input array (x) (Size: AtLeast(min=1))
* @param dimensionsY dimensions for second input array (y) (Size: AtLeast(min=1))
* @return output Output variable (NUMERIC type)
*/
public INDArray tensorMmul(INDArray x, INDArray y, int[] dimensionsX, int... dimensionsY) {
NDValidation.validateNumerical("tensorMmul", "x", x);
NDValidation.validateNumerical("tensorMmul", "y", y);
Preconditions.checkArgument(dimensionsX.length >= 1, "dimensionsX has incorrect size/length. Expected: dimensionsX.length >= 1, got %s", dimensionsX.length);
Preconditions.checkArgument(dimensionsY.length >= 1, "dimensionsY has incorrect size/length. Expected: dimensionsY.length >= 1, got %s", dimensionsY.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.reduce.TensorMmul(x, y, dimensionsX, dimensionsY, false, false, false))[0];
}
/**
* Repeat (tile) the input tensor the specified number of times.
* For example, if input is
* [1, 2]
* [3, 4]
* and repeat is [2, 3]
* then output is
* [1, 2, 1, 2, 1, 2]
* [3, 4, 3, 4, 3, 4]
* [1, 2, 1, 2, 1, 2]
* [3, 4, 3, 4, 3, 4]
*
* @param x Input variable (NDARRAY type)
* @param repeat Number of times to repeat in each axis. Must have length equal to the rank of the input array (INT type)
* @return output Output variable (NDARRAY type)
*/
public INDArray tile(INDArray x, INDArray repeat) {
NDValidation.validateInteger("tile", "repeat", repeat);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Tile(x, repeat))[0];
}
/**
* see tile(String, SDVariable, int...)
*
* @param x (NDARRAY type)
* @param repeat (Size: AtLeast(min=1))
* @return output (NDARRAY type)
*/
public INDArray tile(INDArray x, int... repeat) {
Preconditions.checkArgument(repeat.length >= 1, "repeat has incorrect size/length. Expected: repeat.length >= 1, got %s", repeat.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Tile(x, repeat))[0];
}
/**
* Matrix transpose operation: If input has shape [a,b] output has shape [b,a]
*
* @param x Input variable (NDARRAY type)
* @return output transposed input (NDARRAY type)
*/
public INDArray transpose(INDArray x) {
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Transpose(x))[0];
}
/**
* Unsorted segment max operation. As per segmentMax(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [6, 9, 8] = [max(3,6), max(1,4,9), max(2,8)]
*
* @param data Data (variable) to perform unsorted segment max on (NUMERIC type)
* @param segmentIds Variable for the segment IDs (NUMERIC type)
* @param numSegments Number of segments
* @return output Unsorted segment output (NUMERIC type)
*/
public INDArray unsortedSegmentMax(INDArray data, INDArray segmentIds, int numSegments) {
NDValidation.validateNumerical("unsortedSegmentMax", "data", data);
NDValidation.validateNumerical("unsortedSegmentMax", "segmentIds", segmentIds);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentMax(data, segmentIds, numSegments))[0];
}
/**
* Unsorted segment mean operation. As per segmentMean(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [4.5, 4.666, 5] = [mean(3,6), mean(1,4,9), mean(2,8)]
*
* @param data Data (variable) to perform unsorted segment max on (NUMERIC type)
* @param segmentIds Variable for the segment IDs (NUMERIC type)
* @param numSegments Number of segments
* @return output Unsorted segment output (NUMERIC type)
*/
public INDArray unsortedSegmentMean(INDArray data, INDArray segmentIds, int numSegments) {
NDValidation.validateNumerical("unsortedSegmentMean", "data", data);
NDValidation.validateNumerical("unsortedSegmentMean", "segmentIds", segmentIds);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentMean(data, segmentIds, numSegments))[0];
}
/**
* Unsorted segment min operation. As per segmentMin(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [3, 1, 2] = [min(3,6), min(1,4,9), min(2,8)]
*
* @param data Data (variable) to perform unsorted segment max on (NUMERIC type)
* @param segmentIds Variable for the segment IDs (NUMERIC type)
* @param numSegments Number of segments
* @return output Unsorted segment output (NUMERIC type)
*/
public INDArray unsortedSegmentMin(INDArray data, INDArray segmentIds, int numSegments) {
NDValidation.validateNumerical("unsortedSegmentMin", "data", data);
NDValidation.validateNumerical("unsortedSegmentMin", "segmentIds", segmentIds);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentMin(data, segmentIds, numSegments))[0];
}
/**
* Unsorted segment product operation. As per segmentProd(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [4.5, 4.666, 5] = [mean(3,6), mean(1,4,9), mean(2,8)]
*
* @param data Data (variable) to perform unsorted segment max on (NUMERIC type)
* @param segmentIds Variable for the segment IDs (NUMERIC type)
* @param numSegments Number of segments
* @return output Unsorted segment output (NUMERIC type)
*/
public INDArray unsortedSegmentProd(INDArray data, INDArray segmentIds, int numSegments) {
NDValidation.validateNumerical("unsortedSegmentProd", "data", data);
NDValidation.validateNumerical("unsortedSegmentProd", "segmentIds", segmentIds);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentProd(data, segmentIds, numSegments))[0];
}
/**
* Unsorted segment sqrtN operation. Simply returns the sqrt of the count of the number of values in each segment
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [1.414, 1.732, 1.414] = [sqrt(2), sqrtN(3), sqrtN(2)]
*
* @param data Data (variable) to perform unsorted segment max on (NUMERIC type)
* @param segmentIds Variable for the segment IDs (NUMERIC type)
* @param numSegments Number of segments
* @return output Unsorted segment output (NUMERIC type)
*/
public INDArray unsortedSegmentSqrtN(INDArray data, INDArray segmentIds, int numSegments) {
NDValidation.validateNumerical("unsortedSegmentSqrtN", "data", data);
NDValidation.validateNumerical("unsortedSegmentSqrtN", "segmentIds", segmentIds);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentSqrtN(data, segmentIds, numSegments))[0];
}
/**
* Unsorted segment sum operation. As per segmentSum(String, SDVariable, SDVariable) but without
* the requirement for the indices to be sorted.
* If data = [1, 3, 2, 6, 4, 9, 8]
* segmentIds = [1, 0, 2, 0, 1, 1, 2]
* then output = [9, 14, 10] = [sum(3,6), sum(1,4,9), sum(2,8)]
*
* @param data Data (variable) to perform unsorted segment max on (NUMERIC type)
* @param segmentIds Variable for the segment IDs (NUMERIC type)
* @param numSegments Number of segments
* @return output Unsorted segment output (NUMERIC type)
*/
public INDArray unsortedSegmentSum(INDArray data, INDArray segmentIds, int numSegments) {
NDValidation.validateNumerical("unsortedSegmentSum", "data", data);
NDValidation.validateNumerical("unsortedSegmentSum", "segmentIds", segmentIds);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentSum(data, segmentIds, numSegments))[0];
}
/**
* Unstack a variable of rank X into N rank X-1 variables by taking slices along the specified axis.
* If input has shape [a,b,c] then output has shape:
* axis = 0: [b,c]
* axis = 1: [a,c]
* axis = 2: [a,b]
*
* @param value Input variable to unstack (NDARRAY type)
* @param axis Axis to unstack on
* @param num Number of output variables
*/
public INDArray[] unstack(INDArray value, int axis, int num) {
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.Unstack(value, axis, num));
}
/**
* Variance array reduction operation, optionally along specified dimensions
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param biasCorrected If true: divide by (N-1) (i.e., sample variable). If false: divide by N (population variance)
* @param keepDims If true: keep the dimensions that are reduced on (as size 1). False: remove the reduction dimensions
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output reduced array of rank (input rank - num dimensions) (NUMERIC type)
*/
public INDArray variance(INDArray x, boolean biasCorrected, boolean keepDims, int... dimensions) {
NDValidation.validateNumerical("variance", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.summarystats.Variance(x, biasCorrected, keepDims, dimensions));
}
/**
* Variance array reduction operation, optionally along specified dimensions
*
* Note that if keepDims = true, the output variable has the same rank as the input variable,
* with the reduced dimensions having size 1. This can be useful for later broadcast operations (such as subtracting
* the mean along a dimension).
* Example: if input has shape [a,b,c] and dimensions=[1] then output has shape:
* keepDims = true: [a,1,c]
* keepDims = false: [a,c]
*
* @param x Input variable (NUMERIC type)
* @param biasCorrected If true: divide by (N-1) (i.e., sample variable). If false: divide by N (population variance)
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed (Size: AtLeast(min=0))
* @return output reduced array of rank (input rank - num dimensions) (NUMERIC type)
*/
public INDArray variance(INDArray x, boolean biasCorrected, int... dimensions) {
NDValidation.validateNumerical("variance", "x", x);
Preconditions.checkArgument(dimensions.length >= 0, "dimensions has incorrect size/length. Expected: dimensions.length >= 0, got %s", dimensions.length);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.summarystats.Variance(x, biasCorrected, false, dimensions));
}
/**
* Return a variable of all 0s, with the same shape as the input variable. Note that this is dynamic:
* if the input shape changes in later execution, the returned variable's shape will also be updated
*
* @param input Input (NUMERIC type)
* @return output A new Variable with the same (dynamic) shape as the input (NUMERIC type)
*/
public INDArray zerosLike(INDArray input) {
NDValidation.validateNumerical("zerosLike", "input", input);
return Nd4j.exec(new org.nd4j.linalg.api.ops.impl.shape.ZerosLike(input))[0];
}
}