All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.jcublas.blas.JcublasLapack Maven / Gradle / Ivy

The newest version!
/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.nd4j.linalg.jcublas.blas;

import lombok.extern.slf4j.Slf4j;
import lombok.val;
import org.bytedeco.javacpp.DoublePointer;
import org.bytedeco.javacpp.FloatPointer;
import org.bytedeco.javacpp.IntPointer;
import org.bytedeco.javacpp.Pointer;
import org.nd4j.jita.allocator.Allocator;
import org.nd4j.jita.allocator.impl.AtomicAllocator;
import org.nd4j.jita.allocator.pointers.CudaPointer;
import org.nd4j.jita.allocator.pointers.cuda.cusolverDnHandle_t;
import org.nd4j.linalg.api.blas.BlasException;
import org.nd4j.linalg.api.blas.impl.BaseLapack;
import org.nd4j.linalg.api.buffer.DataBuffer;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.executioner.GridExecutioner;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.linalg.jcublas.CublasPointer;
import org.nd4j.linalg.jcublas.buffer.BaseCudaDataBuffer;
import org.nd4j.linalg.jcublas.context.CudaContext;
import org.nd4j.nativeblas.NativeOps;
import org.nd4j.nativeblas.NativeOpsHolder;

import org.bytedeco.cuda.cudart.*;
import org.bytedeco.cuda.cusolver.*;

import static org.bytedeco.cuda.global.cublas.*;
import static org.bytedeco.cuda.global.cusolver.*;

/**
 * JCublas lapack
 *
 * @author Adam Gibson
 * @author Richard Corbishley (signed)
 *
 */
@Slf4j
public class JcublasLapack extends BaseLapack {

    private NativeOps nativeOps = NativeOpsHolder.getInstance().getDeviceNativeOps();
    private Allocator allocator = AtomicAllocator.getInstance();

    @Override
    public void sgetrf(int M, int N, INDArray A, INDArray IPIV, INDArray INFO) {
        INDArray a = A;
        if (Nd4j.dataType() != DataType.FLOAT)
            log.warn("FLOAT getrf called in DOUBLE environment");

        if (A.ordering() == 'c')
            a = A.dup('f');

        if (Nd4j.getExecutioner() instanceof GridExecutioner)
            ((GridExecutioner) Nd4j.getExecutioner()).flushQueue();

        // Get context for current thread
        val ctx = allocator.getDeviceContext();

        // setup the solver handles for cuSolver calls
        cusolverDnHandle_t handle = ctx.getSolverHandle();
        cusolverDnContext solverDn = new cusolverDnContext(handle);

        // synchronized on the solver
        synchronized (handle) {
            int result = cusolverDnSetStream(new cusolverDnContext(handle), new CUstream_st(ctx.getCublasStream()));
            if (result != 0)
                throw new BlasException("solverSetStream failed");

            // transfer the INDArray into GPU memory
            CublasPointer xAPointer = new CublasPointer(a, ctx);

            // this output - indicates how much memory we'll need for the real operation
            val worksizeBuffer = (BaseCudaDataBuffer) Nd4j.getDataBufferFactory().createInt(1);
            worksizeBuffer.lazyAllocateHostPointer();

            int stat = cusolverDnSgetrf_bufferSize(solverDn, M, N, (FloatPointer) xAPointer.getDevicePointer(), M,
                    (IntPointer) worksizeBuffer.addressPointer() // we intentionally use host pointer here
            );

            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnSgetrf_bufferSize failed", stat);
            }

            int worksize = worksizeBuffer.getInt(0);
            // Now allocate memory for the workspace, the permutation matrix and a return code
            Pointer workspace = new Workspace(worksize * Nd4j.sizeOfDataType());

            // Do the actual LU decomp
            stat = cusolverDnSgetrf(solverDn, M, N, (FloatPointer) xAPointer.getDevicePointer(), M,
                    new CudaPointer(workspace).asFloatPointer(),
                    new CudaPointer(allocator.getPointer(IPIV, ctx)).asIntPointer(),
                    new CudaPointer(allocator.getPointer(INFO, ctx)).asIntPointer());

            // we do sync to make sure getrf is finished
            //ctx.syncOldStream();

            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnSgetrf failed", stat);
            }
        }
        allocator.registerAction(ctx, a);
        allocator.registerAction(ctx, INFO);
        allocator.registerAction(ctx, IPIV);

        if (a != A)
            A.assign(a);
    }


    @Override
    public void dgetrf(int M, int N, INDArray A, INDArray IPIV, INDArray INFO) {
        INDArray a = A;

        if (Nd4j.dataType() != DataType.DOUBLE)
            log.warn("FLOAT getrf called in FLOAT environment");

        if (A.ordering() == 'c')
            a = A.dup('f');

        if (Nd4j.getExecutioner() instanceof GridExecutioner)
            ((GridExecutioner) Nd4j.getExecutioner()).flushQueue();

        // Get context for current thread
        val ctx = allocator.getDeviceContext();

        // setup the solver handles for cuSolver calls
        cusolverDnHandle_t handle = ctx.getSolverHandle();
        cusolverDnContext solverDn = new cusolverDnContext(handle);

        // synchronized on the solver
        synchronized (handle) {
            int result = cusolverDnSetStream(new cusolverDnContext(handle), new CUstream_st(ctx.getCublasStream()));
            if (result != 0)
                throw new BlasException("solverSetStream failed");

            // transfer the INDArray into GPU memory
            val xAPointer = new CublasPointer(a, ctx);

            // this output - indicates how much memory we'll need for the real operation
            val worksizeBuffer = (BaseCudaDataBuffer) Nd4j.getDataBufferFactory().createInt(1);
            worksizeBuffer.lazyAllocateHostPointer();

            int stat = cusolverDnDgetrf_bufferSize(solverDn, M, N, (DoublePointer) xAPointer.getDevicePointer(), M,
                    (IntPointer) worksizeBuffer.addressPointer() // we intentionally use host pointer here
            );

            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnDgetrf_bufferSize failed", stat);
            }
            int worksize = worksizeBuffer.getInt(0);

            // Now allocate memory for the workspace, the permutation matrix and a return code
            val workspace = new Workspace(worksize * Nd4j.sizeOfDataType());

            // Do the actual LU decomp
            stat = cusolverDnDgetrf(solverDn, M, N, (DoublePointer) xAPointer.getDevicePointer(), M,
                    new CudaPointer(workspace).asDoublePointer(),
                    new CudaPointer(allocator.getPointer(IPIV, ctx)).asIntPointer(),
                    new CudaPointer(allocator.getPointer(INFO, ctx)).asIntPointer());

            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnSgetrf failed", stat);
            }
        }
        allocator.registerAction(ctx, a);
        allocator.registerAction(ctx, INFO);
        allocator.registerAction(ctx, IPIV);

        if (a != A)
            A.assign(a);
    }


    //=========================
    // Q R DECOMP
    @Override
    public void sgeqrf(int M, int N, INDArray A, INDArray R, INDArray INFO) {
        INDArray a = A;
        INDArray r = R;

        if (Nd4j.dataType() != DataType.FLOAT)
            log.warn("FLOAT getrf called in DOUBLE environment");

        if (A.ordering() == 'c')
            a = A.dup('f');
        if (R != null && R.ordering() == 'c')
            r = R.dup('f');

        INDArray tau = Nd4j.createArrayFromShapeBuffer(Nd4j.getDataBufferFactory().createFloat(N),
                Nd4j.getShapeInfoProvider().createShapeInformation(new long[]{1, N}, A.dataType()).getFirst());

        if (Nd4j.getExecutioner() instanceof GridExecutioner)
            ((GridExecutioner) Nd4j.getExecutioner()).flushQueue();

        // Get context for current thread
        val ctx = allocator.getDeviceContext();

        // setup the solver handles for cuSolver calls
        cusolverDnHandle_t handle = ctx.getSolverHandle();
        cusolverDnContext solverDn = new cusolverDnContext(handle);

        // synchronized on the solver
        synchronized (handle) {
            int result = cusolverDnSetStream(new cusolverDnContext(handle), new CUstream_st(ctx.getCublasStream()));
            if (result != 0)
                throw new IllegalStateException("solverSetStream failed");

            // transfer the INDArray into GPU memory
            CublasPointer xAPointer = new CublasPointer(a, ctx);
            CublasPointer xTauPointer = new CublasPointer(tau, ctx);

            // this output - indicates how much memory we'll need for the real operation
            val worksizeBuffer = (BaseCudaDataBuffer) Nd4j.getDataBufferFactory().createInt(1);
            worksizeBuffer.lazyAllocateHostPointer();

            int stat = cusolverDnSgeqrf_bufferSize(solverDn, M, N,
                    (FloatPointer) xAPointer.getDevicePointer(), M,
                    (IntPointer) worksizeBuffer.addressPointer() // we intentionally use host pointer here
            );


            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnSgeqrf_bufferSize failed", stat);
            }
            int worksize = worksizeBuffer.getInt(0);
            // Now allocate memory for the workspace, the permutation matrix and a return code
            Pointer workspace = new Workspace(worksize * Nd4j.sizeOfDataType());

            // Do the actual QR decomp
            stat = cusolverDnSgeqrf(solverDn, M, N,
                    (FloatPointer) xAPointer.getDevicePointer(), M,
                    (FloatPointer) xTauPointer.getDevicePointer(),
                    new CudaPointer(workspace).asFloatPointer(),
                    worksize,
                    new CudaPointer(allocator.getPointer(INFO, ctx)).asIntPointer()
            );
            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnSgeqrf failed", stat);
            }

            allocator.registerAction(ctx, a);
            //allocator.registerAction(ctx, tau);
            allocator.registerAction(ctx, INFO);
            if (INFO.getInt(0) != 0) {
                throw new BlasException("cusolverDnSgeqrf failed on INFO", INFO.getInt(0));
            }

            // Copy R ( upper part of Q ) into result
            if (r != null) {
                r.assign(a.get(NDArrayIndex.interval(0, a.columns()), NDArrayIndex.all()));

                INDArrayIndex ix[] = new INDArrayIndex[2];
                for (int i = 1; i < Math.min(a.rows(), a.columns()); i++) {
                    ix[0] = NDArrayIndex.point(i);
                    ix[1] = NDArrayIndex.interval(0, i);
                    r.put(ix, 0);
                }
            }

            stat = cusolverDnSorgqr_bufferSize(solverDn, M, N, N,
                    (FloatPointer) xAPointer.getDevicePointer(), M,
                    (FloatPointer) xTauPointer.getDevicePointer(),
                    (IntPointer) worksizeBuffer.addressPointer()
            );
            worksize = worksizeBuffer.getInt(0);
            workspace = new Workspace(worksize * Nd4j.sizeOfDataType());

            stat = cusolverDnSorgqr(solverDn, M, N, N,
                    (FloatPointer) xAPointer.getDevicePointer(), M,
                    (FloatPointer) xTauPointer.getDevicePointer(),
                    new CudaPointer(workspace).asFloatPointer(),
                    worksize,
                    new CudaPointer(allocator.getPointer(INFO, ctx)).asIntPointer()
            );
            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnSorgqr failed", stat);
            }
        }
        allocator.registerAction(ctx, a);
        allocator.registerAction(ctx, INFO);
        //    allocator.registerAction(ctx, tau);

        if (a != A)
            A.assign(a);
        if (r != null && r != R)
            R.assign(r);

        log.debug("A: {}", A);
        if (R != null) log.debug("R: {}", R);
    }

    @Override
    public void dgeqrf(int M, int N, INDArray A, INDArray R, INDArray INFO) {
        INDArray a = A;
        INDArray r = R;

        if (Nd4j.dataType() != DataType.DOUBLE)
            log.warn("DOUBLE getrf called in FLOAT environment");

        if (A.ordering() == 'c')
            a = A.dup('f');
        if (R != null && R.ordering() == 'c')
            r = R.dup('f');

        INDArray tau = Nd4j.createArrayFromShapeBuffer(Nd4j.getDataBufferFactory().createDouble(N),
                Nd4j.getShapeInfoProvider().createShapeInformation(new long[]{1, N}, A.dataType()));

        if (Nd4j.getExecutioner() instanceof GridExecutioner)
            ((GridExecutioner) Nd4j.getExecutioner()).flushQueue();

        // Get context for current thread
        val ctx = (CudaContext) allocator.getDeviceContext();

        // setup the solver handles for cuSolver calls
        cusolverDnHandle_t handle = ctx.getSolverHandle();
        cusolverDnContext solverDn = new cusolverDnContext(handle);

        // synchronized on the solver
        synchronized (handle) {
            int result = cusolverDnSetStream(new cusolverDnContext(handle), new CUstream_st(ctx.getCublasStream()));
            if (result != 0)
                throw new BlasException("solverSetStream failed");

            // transfer the INDArray into GPU memory
            CublasPointer xAPointer = new CublasPointer(a, ctx);
            CublasPointer xTauPointer = new CublasPointer(tau, ctx);

            // this output - indicates how much memory we'll need for the real operation
            val worksizeBuffer = (BaseCudaDataBuffer) Nd4j.getDataBufferFactory().createInt(1);
            worksizeBuffer.lazyAllocateHostPointer();

            int stat = cusolverDnDgeqrf_bufferSize(solverDn, M, N,
                    (DoublePointer) xAPointer.getDevicePointer(), M,
                    (IntPointer) worksizeBuffer.addressPointer() // we intentionally use host pointer here
            );

            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnDgeqrf_bufferSize failed", stat);
            }
            int worksize = worksizeBuffer.getInt(0);
            // Now allocate memory for the workspace, the permutation matrix and a return code
            Pointer workspace = new Workspace(worksize * Nd4j.sizeOfDataType());

            // Do the actual QR decomp
            stat = cusolverDnDgeqrf(solverDn, M, N,
                    (DoublePointer) xAPointer.getDevicePointer(), M,
                    (DoublePointer) xTauPointer.getDevicePointer(),
                    new CudaPointer(workspace).asDoublePointer(),
                    worksize,
                    new CudaPointer(allocator.getPointer(INFO, ctx)).asIntPointer()
            );
            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnDgeqrf failed", stat);
            }

            allocator.registerAction(ctx, a);
            allocator.registerAction(ctx, tau);
            allocator.registerAction(ctx, INFO);
            if (INFO.getInt(0) != 0) {
                throw new BlasException("cusolverDnDgeqrf failed with info", INFO.getInt(0));
            }

            // Copy R ( upper part of Q ) into result
            if (r != null) {
                r.assign(a.get(NDArrayIndex.interval(0, a.columns()), NDArrayIndex.all()));

                INDArrayIndex ix[] = new INDArrayIndex[2];
                for (int i = 1; i < Math.min(a.rows(), a.columns()); i++) {
                    ix[0] = NDArrayIndex.point(i);
                    ix[1] = NDArrayIndex.interval(0, i);
                    r.put(ix, 0);
                }
            }
            stat = cusolverDnDorgqr_bufferSize(solverDn, M, N, N,
                    (DoublePointer) xAPointer.getDevicePointer(), M,
                    (DoublePointer) xTauPointer.getDevicePointer(),
                    (IntPointer) worksizeBuffer.addressPointer()
            );
            worksize = worksizeBuffer.getInt(0);
            workspace = new Workspace(worksize * Nd4j.sizeOfDataType());

            stat = cusolverDnDorgqr(solverDn, M, N, N,
                    (DoublePointer) xAPointer.getDevicePointer(), M,
                    (DoublePointer) xTauPointer.getDevicePointer(),
                    new CudaPointer(workspace).asDoublePointer(),
                    worksize,
                    new CudaPointer(allocator.getPointer(INFO, ctx)).asIntPointer()
            );
            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnDorgqr failed", stat);
            }
        }
        allocator.registerAction(ctx, a);
        allocator.registerAction(ctx, INFO);

        if (a != A)
            A.assign(a);
        if (r != null && r != R)
            R.assign(r);

        log.debug("A: {}", A);
        if (R != null) log.debug("R: {}", R);
    }

    //=========================
// CHOLESKY DECOMP
    @Override
    public void spotrf(byte _uplo, int N, INDArray A, INDArray INFO) {
        INDArray a = A;

        int uplo = _uplo == 'L' ? CUBLAS_FILL_MODE_LOWER : CUBLAS_FILL_MODE_UPPER;

        if (A.dataType() != DataType.FLOAT)
            log.warn("FLOAT potrf called for " + A.dataType());

        if (A.ordering() == 'c')
            a = A.dup('f');

        if (Nd4j.getExecutioner() instanceof GridExecutioner)
            ((GridExecutioner) Nd4j.getExecutioner()).flushQueue();

        // Get context for current thread
        val ctx = (CudaContext) allocator.getDeviceContext();

        // setup the solver handles for cuSolver calls
        cusolverDnHandle_t handle = ctx.getSolverHandle();
        cusolverDnContext solverDn = new cusolverDnContext(handle);

        // synchronized on the solver
        synchronized (handle) {
            int result = cusolverDnSetStream(new cusolverDnContext(handle), new CUstream_st(ctx.getCublasStream()));
            if (result != 0)
                throw new BlasException("solverSetStream failed");

            // transfer the INDArray into GPU memory
            CublasPointer xAPointer = new CublasPointer(a, ctx);

            // this output - indicates how much memory we'll need for the real operation
            val worksizeBuffer = (BaseCudaDataBuffer) Nd4j.getDataBufferFactory().createInt(1);
            worksizeBuffer.lazyAllocateHostPointer();

            int stat = cusolverDnSpotrf_bufferSize(solverDn, uplo, N,
                    (FloatPointer) xAPointer.getDevicePointer(), N,
                    (IntPointer) worksizeBuffer.addressPointer() // we intentionally use host pointer here
            );

            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnSpotrf_bufferSize failed", stat);
            }

            int worksize = worksizeBuffer.getInt(0);
            // Now allocate memory for the workspace, the permutation matrix and a return code
            Pointer workspace = new Workspace(worksize * Nd4j.sizeOfDataType());

            // Do the actual decomp
            stat = cusolverDnSpotrf(solverDn, uplo, N,
                    (FloatPointer) xAPointer.getDevicePointer(), N,
                    new CudaPointer(workspace).asFloatPointer(),
                    worksize,
                    new CudaPointer(allocator.getPointer(INFO, ctx)).asIntPointer()
            );

            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnSpotrf failed", stat);
            }
        }
        allocator.registerAction(ctx, a);
        allocator.registerAction(ctx, INFO);

        if (a != A)
            A.assign(a);

        if (uplo == CUBLAS_FILL_MODE_UPPER ) {
            A.assign(A.transpose());
            INDArrayIndex ix[] = new INDArrayIndex[2];
            for (int i = 1; i < Math.min(A.rows(), A.columns()); i++) {
                ix[0] = NDArrayIndex.point(i);
                ix[1] = NDArrayIndex.interval(0, i);
                A.put(ix, 0);
            }
        } else {
            INDArrayIndex ix[] = new INDArrayIndex[2];
            for (int i = 0; i < Math.min(A.rows(), A.columns() - 1); i++) {
                ix[0] = NDArrayIndex.point(i);
                ix[1] = NDArrayIndex.interval(i + 1, A.columns());
                A.put(ix, 0);
            }
        }

        log.debug("A: {}", A);
    }

    @Override
    public void dpotrf(byte _uplo, int N, INDArray A, INDArray INFO) {
        INDArray a = A;

        int uplo = _uplo == 'L' ? CUBLAS_FILL_MODE_LOWER : CUBLAS_FILL_MODE_UPPER;

        if (A.dataType() != DataType.DOUBLE)
            log.warn("DOUBLE potrf called for " + A.dataType());

        if (A.ordering() == 'c')
            a = A.dup('f');

        if (Nd4j.getExecutioner() instanceof GridExecutioner)
            ((GridExecutioner) Nd4j.getExecutioner()).flushQueue();

        // Get context for current thread
        val ctx = allocator.getDeviceContext();

        // setup the solver handles for cuSolver calls
        cusolverDnHandle_t handle = ctx.getSolverHandle();
        cusolverDnContext solverDn = new cusolverDnContext(handle);

        // synchronized on the solver
        synchronized (handle) {
            int result = cusolverDnSetStream(solverDn, new CUstream_st(ctx.getCublasStream()));
            if (result != 0)
                throw new BlasException("solverSetStream failed");

            // transfer the INDArray into GPU memory
            CublasPointer xAPointer = new CublasPointer(a, ctx);

            // this output - indicates how much memory we'll need for the real operation
            val worksizeBuffer = (BaseCudaDataBuffer) Nd4j.getDataBufferFactory().createInt(1);
            worksizeBuffer.lazyAllocateHostPointer();

            int stat = cusolverDnDpotrf_bufferSize(solverDn, uplo, N,
                    (DoublePointer) xAPointer.getDevicePointer(), N,
                    (IntPointer) worksizeBuffer.addressPointer() // we intentionally use host pointer here
            );

            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnDpotrf_bufferSize failed", stat);
            }

            int worksize = worksizeBuffer.getInt(0);
            // Now allocate memory for the workspace, the permutation matrix and a return code
            Pointer workspace = new Workspace(worksize * Nd4j.sizeOfDataType(DataType.DOUBLE));

            // Do the actual decomp
            stat = cusolverDnDpotrf(solverDn, uplo, N,
                    (DoublePointer) xAPointer.getDevicePointer(), N,
                    new CudaPointer(workspace).asDoublePointer(),
                    worksize,
                    new CudaPointer(allocator.getPointer(INFO, ctx)).asIntPointer()
            );

            if (stat != CUSOLVER_STATUS_SUCCESS) {
                throw new BlasException("cusolverDnDpotrf failed", stat);
            }
        }
        allocator.registerAction(ctx, a);
        allocator.registerAction(ctx, INFO);

        if (a != A)
            A.assign(a);

        if (uplo == CUBLAS_FILL_MODE_UPPER ) {
            A.assign(A.transpose());
            INDArrayIndex ix[] = new INDArrayIndex[2];
            for (int i = 1; i < Math.min(A.rows(), A.columns()); i++) {
                ix[0] = NDArrayIndex.point(i);
                ix[1] = NDArrayIndex.interval(0, i);
                A.put(ix, 0);
            }
        } else {
            INDArrayIndex ix[] = new INDArrayIndex[2];
            for (int i = 0; i < Math.min(A.rows(), A.columns() - 1); i++) {
                ix[0] = NDArrayIndex.point(i);
                ix[1] = NDArrayIndex.interval(i + 1, A.columns());
                A.put(ix, 0);
            }
        }

        log.debug("A: {}", A);
    }


    /**
     * Generate inverse ggiven LU decomp
     *
     * @param N
     * @param A
     * @param IPIV
     * @param WORK
     * @param lwork
     * @param INFO
     */
    @Override
    public void getri(int N, INDArray A, int lda, int[] IPIV, INDArray WORK, int lwork, int INFO) {

    }


    @Override
    public void sgesvd(byte jobu, byte jobvt, int M, int N, INDArray A, INDArray S, INDArray U, INDArray VT,
                       INDArray INFO) {

        if (Nd4j.dataType() != DataType.FLOAT)
            log.warn("FLOAT gesvd called in DOUBLE environment");

        INDArray a = A;
        INDArray u = U;
        INDArray vt = VT;

        // we should transpose & adjust outputs if M Integer.MAX_VALUE) {
            throw new RuntimeException("Rows overflow");
        }
        int M = (int) A.rows();

        if (Nd4j.getExecutioner() instanceof GridExecutioner)
            ((GridExecutioner) Nd4j.getExecutioner()).flushQueue();

        // Get context for current thread
        val ctx = (CudaContext) allocator.getDeviceContext();

        // setup the solver handles for cuSolver calls
        cusolverDnHandle_t handle = ctx.getSolverHandle();
        cusolverDnContext solverDn = new cusolverDnContext(handle);

        // synchronized on the solver
        synchronized (handle) {
            status = cusolverDnSetStream(new cusolverDnContext(handle), new CUstream_st(ctx.getCublasStream()));
            if (status == 0) {
                // transfer the INDArray into GPU memory
                CublasPointer xAPointer = new CublasPointer(a, ctx);
                CublasPointer xRPointer = new CublasPointer(R, ctx);

                // this output - indicates how much memory we'll need for the real operation
                val worksizeBuffer = (BaseCudaDataBuffer) Nd4j.getDataBufferFactory().createInt(1);
                worksizeBuffer.lazyAllocateHostPointer();

                status = cusolverDnSsyevd_bufferSize(
                        solverDn, jobz, uplo, M,
                        (FloatPointer) xAPointer.getDevicePointer(), M,
                        (FloatPointer) xRPointer.getDevicePointer(),
                        (IntPointer) worksizeBuffer.addressPointer());

                if (status == CUSOLVER_STATUS_SUCCESS) {
                    int worksize = worksizeBuffer.getInt(0);

                    // allocate memory for the workspace, the non-converging row buffer and a return code
                    val workspace = new Workspace(worksize * 4);    //4 = float width

                    INDArray INFO = Nd4j.createArrayFromShapeBuffer(Nd4j.getDataBufferFactory().createInt(1),
                            Nd4j.getShapeInfoProvider().createShapeInformation(new long[]{1, 1}, A.dataType()));


                    // Do the actual decomp
                    status = cusolverDnSsyevd(solverDn, jobz, uplo, M,
                            (FloatPointer) xAPointer.getDevicePointer(), M,
                            (FloatPointer) xRPointer.getDevicePointer(),
                            new CudaPointer(workspace).asFloatPointer(), worksize,
                            new CudaPointer(allocator.getPointer(INFO, ctx)).asIntPointer());

                    allocator.registerAction(ctx, INFO);
                    if (status == 0) status = INFO.getInt(0);
                }
            }
        }
        if (status == 0) {
            allocator.registerAction(ctx, R);
            allocator.registerAction(ctx, a);

            if (a != A)
                A.assign(a);
        }
        return status;
    }


    public int dsyev(char _jobz, char _uplo, int N, INDArray A, INDArray R) {
        int status = -1;

        int jobz = _jobz == 'V' ? CUSOLVER_EIG_MODE_VECTOR : CUSOLVER_EIG_MODE_NOVECTOR;
        int uplo = _uplo == 'L' ? CUBLAS_FILL_MODE_LOWER : CUBLAS_FILL_MODE_UPPER;

        INDArray a = A;

        if (A.ordering() == 'c')
            a = A.dup('f');

        if (A.rows() > Integer.MAX_VALUE) {
            throw new RuntimeException("Rows overflow");
        }

        int M = (int) A.rows();

        if (Nd4j.getExecutioner() instanceof GridExecutioner)
            ((GridExecutioner) Nd4j.getExecutioner()).flushQueue();

        // Get context for current thread
        val ctx = allocator.getDeviceContext();

        // setup the solver handles for cuSolver calls
        cusolverDnHandle_t handle = ctx.getSolverHandle();
        cusolverDnContext solverDn = new cusolverDnContext(handle);

        // synchronized on the solver
        synchronized (handle) {
            status = cusolverDnSetStream(new cusolverDnContext(handle), new CUstream_st(ctx.getCublasStream()));
            if (status == 0) {
                // transfer the INDArray into GPU memory
                CublasPointer xAPointer = new CublasPointer(a, ctx);
                CublasPointer xRPointer = new CublasPointer(R, ctx);

                // this output - indicates how much memory we'll need for the real operation
                val worksizeBuffer = (BaseCudaDataBuffer) Nd4j.getDataBufferFactory().createInt(1);
                worksizeBuffer.lazyAllocateHostPointer();

                status = cusolverDnDsyevd_bufferSize(
                        solverDn, jobz, uplo, M,
                        (DoublePointer) xAPointer.getDevicePointer(), M,
                        (DoublePointer) xRPointer.getDevicePointer(),
                        (IntPointer) worksizeBuffer.addressPointer());

                if (status == CUSOLVER_STATUS_SUCCESS) {
                    int worksize = worksizeBuffer.getInt(0);

                    // allocate memory for the workspace, the non-converging row buffer and a return code
                    Pointer workspace = new Workspace(worksize * 8);        //8 = double width

                    INDArray INFO = Nd4j.createArrayFromShapeBuffer(Nd4j.getDataBufferFactory().createInt(1),
                            Nd4j.getShapeInfoProvider().createShapeInformation(new long[]{1, 1}, A.dataType()));


                    // Do the actual decomp
                    status = cusolverDnDsyevd(solverDn, jobz, uplo, M,
                            (DoublePointer) xAPointer.getDevicePointer(), M,
                            (DoublePointer) xRPointer.getDevicePointer(),
                            new CudaPointer(workspace).asDoublePointer(), worksize,
                            new CudaPointer(allocator.getPointer(INFO, ctx)).asIntPointer());

                    allocator.registerAction(ctx, INFO);
                    if (status == 0) status = INFO.getInt(0);
                }
            }
        }
        if (status == 0) {
            allocator.registerAction(ctx, R);
            allocator.registerAction(ctx, a);

            if (a != A)
                A.assign(a);
        }
        return status;
    }

    static class Workspace extends Pointer {
        public Workspace(long size) {
            super(NativeOpsHolder.getInstance().getDeviceNativeOps().mallocDevice(size, 0, 0));
            deallocator(new Deallocator() {
                @Override
                public void deallocate() {
                    NativeOpsHolder.getInstance().getDeviceNativeOps().freeDevice(Workspace.this, 0);
                }
            });
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy