All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.jcublas.context.ContextHolder Maven / Gradle / Ivy

The newest version!
/*-
 *
 *  * Copyright 2015 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 *
 */

package org.nd4j.linalg.jcublas.context;

import lombok.Data;
import org.nd4j.linalg.io.ClassPathResource;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicBoolean;


/**
 * A multithreaded version derived
 * from the cuda launcher util
 * by the authors of jcuda.
 *
 * This class handles managing cuda contexts
 * across multiple devices and threads.
 *
 *
 * @author Adam Gibson
 */
@Data
public class ContextHolder {

    private Map threadNameToDeviceNumber = new ConcurrentHashMap<>();
    private Map threads = new ConcurrentHashMap<>();
    private List bannedDevices;
    private int numDevices = 0;
    private static ContextHolder INSTANCE;
    public final static String DEVICES_TO_BAN = "org.nd4j.linalg.jcuda.jcublas.ban_devices";
    private static AtomicBoolean deviceSetup = new AtomicBoolean(false);
    private boolean confCalled = false;
    private static Logger log = LoggerFactory.getLogger(ContextHolder.class);
    private AtomicBoolean shutdown = new AtomicBoolean(false);

    // holder for memory strategies override
    /**
     * Singleton pattern
     * @return the instance for the context holder.
     */
    public static synchronized  ContextHolder getInstance() {

        if(INSTANCE == null) {
            Properties props = new Properties();
            try {
                props.load(new ClassPathResource("/cudafunctions.properties", ContextHolder.class.getClassLoader()).getInputStream());
            } catch (IOException e) {
                throw new RuntimeException(e);
            }

            INSTANCE = new ContextHolder();
            INSTANCE.configure();


            //set the properties to be accessible globally
            for(String pair : props.stringPropertyNames())
                System.getProperties().put(pair,props.getProperty(pair));



        }



        return INSTANCE;
    }


    public Map getThreads() {
        return threads;
    }



    /**
     * Get the number of devices
     * @return the number of devices
     */
    public int deviceNum() {
        return numDevices;
    }


    /**
     * Configure the given information
     * based on the device
     */
    public void configure() {
        if(confCalled )
            return;

/*
        setContext();



        // Check if the device supports mapped host memory
        cudaDeviceProp deviceProperties = new cudaDeviceProp();
        JCuda.cudaGetDeviceProperties(deviceProperties, 0);
        if (deviceProperties.canMapHostMemory == 0) {
            System.err.println("This device can not map host memory");
            System.err.println(deviceProperties.toFormattedString());
            return;
        }
*/

        /*
        // if we'll need stack initialization, here's the code
        int numberOfCores = CudaArgs.convertMPtoCores(deviceProperties.major, deviceProperties.minor, deviceProperties.multiProcessorCount) * deviceProperties.multiProcessorCount;
        int maxThreadsPerCore = deviceProperties.maxThreadsPerMultiProcessor / CudaArgs.convertMPtoCores(deviceProperties.major, deviceProperties.minor, deviceProperties.multiProcessorCount);


        long stackSize = Math.min(512*1024, deviceProperties.totalGlobalMem / numberOfCores  / (maxThreadsPerCore + 8) );

        JCuda.cudaDeviceSetLimit(0,stackSize);

        */



        //force certain ops to have a certain number of threads
        /*
        Properties threadProps = new Properties();
        try {
            InputStream is = ContextHolder.class.getResourceAsStream("/function_threads.properties");
            threadProps.load(is);
        } catch (IOException e) {
            e.printStackTrace();
        }

        for(String prop : threadProps.stringPropertyNames()) {
            threads.put(prop,Integer.parseInt(threadProps.getProperty(prop)));
        }
        */

        try {
            /*
            GenericObjectPoolConfig config = new GenericObjectPoolConfig();
            config.setJmxEnabled(true);
            config.setBlockWhenExhausted(false);
            config.setMaxIdle(Runtime.getRuntime().availableProcessors());
            config.setMaxTotal(Runtime.getRuntime().availableProcessors());
            config.setMinIdle(Runtime.getRuntime().availableProcessors());
            config.setJmxNameBase("handles");
            handlePool = new CublasHandlePool(new CublasHandlePooledItemFactory(),config);
            GenericObjectPoolConfig confClone = config.clone();
            confClone.setMaxTotal(Runtime.getRuntime().availableProcessors() * 10);
            confClone.setMaxIdle(Runtime.getRuntime().availableProcessors() * 10);
            confClone.setMinIdle(Runtime.getRuntime().availableProcessors() * 10);
            GenericObjectPoolConfig streamConf = confClone.clone();
            streamConf.setJmxNameBase("streams");
            streamPool = new StreamPool(new StreamItemFactory(),streamConf);
            GenericObjectPoolConfig oldStreamConf = streamConf.clone();
            oldStreamConf.setJmxNameBase("oldstream");
            oldStreamPool = new OldStreamPool(new OldStreamItemFactory(),oldStreamConf);
            setContext();
            //seed with multiple streams to encourage parallelism
            for(int i = 0; i < Runtime.getRuntime().availableProcessors(); i++) {
                streamPool.addObject();
                oldStreamPool.addObject();
            }
*/

        }catch(Exception e) {
            log.warn("Unable to initialize cuda",e);
        }

    /*
        for(int i = 0; i < numDevices; i++) {
            ClassPathResource confFile = new ClassPathResource("devices/" + i, ContextHolder.class.getClassLoader());
            if(confFile.exists()) {
                Properties props2 = new Properties();
                try {
                    props2.load(confFile.getInputStream());
                    confs.put(i,new DeviceConfiguration(i,props2));
                } catch (IOException e) {
                    throw new RuntimeException(e);
                }

            }
            else
                confs.put(i,new DeviceConfiguration(i));

        }
        */

        confCalled = true;
    }

    public void setNumDevices(int numDevices) {
        this.numDevices = numDevices;
    }

    /**
     * Get the device number for a particular host thread
     * @return the device for the given host thread
     *
     */
    public int getDeviceForThread() {
        /*
        if(numDevices > 1) {
            Integer device =  threadNameToDeviceNumber.get(Thread.currentThread().getName());
            if(device == null) {
                org.nd4j.linalg.api.rng.Random random = Nd4j.getRandom();
                if(random == null)
                    throw new IllegalStateException("Unable to load random class");
                device = Nd4j.getRandom().nextInt(numDevices);
                //reroute banned devices
                while(bannedDevices != null && bannedDevices.contains(device))
                    device = Nd4j.getRandom().nextInt(numDevices);
                threadNameToDeviceNumber.put(Thread.currentThread().getName(),device);
                return device;
            }
        }
*/
        return 0;
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy