kernels.double.reduce.h Maven / Gradle / Ivy
extern "C"
#include
#include
#include
#include "deeplearning4j.h"
//referenced: https://github.com/ArchaeaSoftware/cudahandbook/blob/master/reduction/reduction6AnyBlockSize.cuh
//an op for the kernel
__global double op(double d1,double *extraParams);
//calculate an update of the reduce operation
__global double update(double old,double opOutput,double *extraParams);
//invoked when combining two kernels
__global double merge(double f1, double f2,double *extraParams);
//post process result (for things like means etc)
__global double postProcess(double reduction,int n,int xOffset,double *dx,int incx,double *extraParams,double *result);
/**
Perform a reduction
@param n the number of elements
@param xOffset the starting offset
@param dx the data to perform the reduction on
@param incx the increment on which to perform the reduction
@param extraParams extra parameters used for calculations
@param result where to store the result of the reduction
*/
__global void transform(int n, int xOffset,double *dx,int incx,double *extraParams,double *result) {
extern _local double sPartials[];
int tid = get_local_id(0);
int totalThreads = get_num_groups(0) * get_local_size(0);
int start = get_local_size(0) * get_group_id(0) + tid;
double sum = extraParams[0];
for ( int i = start; i < n; i += totalThreads) {
double curr = dx[i * incx];
sum = update(sum,op(curr,extraParams),extraParams);
}
sPartials[tid] = sum;
barrier(0);
// start the shared memory loop on the next power of 2 less
// than the block size. If block size is not a power of 2,
// accumulate the intermediate sums in the remainder range.
int floorPow2 = get_local_size(0);
if ( floorPow2 & (floorPow2 - 1) ) {
while ( floorPow2 & (floorPow2 - 1) ) {
floorPow2 &= floorPow2 - 1;
}
if ( tid >= floorPow2 ) {
sPartials[tid - floorPow2] = merge(sPartials[tid - floorPow2],sPartials[tid],extraParams);
}
barrier(0);
}
for ( int activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1 ) {
if ( tid < activeThreads ) {
sPartials[tid] = merge(sPartials[tid],sPartials[tid + activeThreads],extraParams);
}
barrier(0);
}
if ( tid == 0 ) {
result[get_group_id(0)] = postProcess(sPartials[0],n,xOffset,dx,incx,extraParams,result);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy