All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.cpu.nativecpu.NDArray Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*
 *
 *  * Copyright 2015 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 *
 */

package org.nd4j.linalg.cpu.nativecpu;


import org.bytedeco.javacpp.Pointer;
import org.nd4j.linalg.api.buffer.DataBuffer;
import org.nd4j.linalg.api.buffer.DoubleBuffer;
import org.nd4j.linalg.api.buffer.FloatBuffer;
import org.nd4j.linalg.api.ndarray.BaseNDArray;
import org.nd4j.linalg.api.ndarray.BaseNDArrayProxy;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;

import java.io.IOException;
import java.io.ObjectOutputStream;

import java.util.List;


/**
 * NDArray: (think numpy)
 * 

* A few things of note. *

* An NDArray can have any number of dimensions. *

* An NDArray is accessed via strides. *

* Strides are how to index over * a contiguous block of data. *

* This block of data has 2 orders(as of right now): * fortran and c * * @author Adam Gibson */ public class NDArray extends BaseNDArray { static { //invoke the override Nd4j.getBlasWrapper(); } public NDArray() { super(); } public NDArray(DataBuffer buffer) { super(buffer); } public NDArray(DataBuffer buffer, int[] shape, int[] stride, int offset, char ordering) { super(buffer, shape, stride, offset, ordering); } public NDArray(double[][] data) { super(data); } public NDArray(double[][] data, char ordering) { super(data, ordering); } /** * Create this ndarray with the given data and shape and 0 offset * * @param data the data to use * @param shape the shape of the ndarray * @param ordering */ public NDArray(float[] data, int[] shape, char ordering) { super(data, shape, ordering); } /** * @param data the data to use * @param shape the shape of the ndarray * @param offset the desired offset * @param ordering the ordering of the ndarray */ public NDArray(float[] data, int[] shape, int offset, char ordering) { super(data, shape, offset, ordering); } /** * Construct an ndarray of the specified shape * with an empty data array * * @param shape the shape of the ndarray * @param stride the stride of the ndarray * @param offset the desired offset * @param ordering the ordering of the ndarray */ public NDArray(int[] shape, int[] stride, int offset, char ordering) { super(shape, stride, offset, ordering); } /** * Construct an ndarray of the specified shape, with optional initialization * * @param shape the shape of the ndarray * @param stride the stride of the ndarray * @param offset the desired offset * @param ordering the ordering of the ndarray * @param initialize Whether to initialize the INDArray. If true: initialize. If false: don't. */ public NDArray(int[] shape, int[] stride, int offset, char ordering, boolean initialize) { super(shape, stride, offset, ordering, initialize); } /** * Create the ndarray with * the specified shape and stride and an offset of 0 * * @param shape the shape of the ndarray * @param stride the stride of the ndarray * @param ordering the ordering of the ndarray */ public NDArray(int[] shape, int[] stride, char ordering) { super(shape, stride, ordering); } public NDArray(int[] shape, int offset, char ordering) { super(shape, offset, ordering); } public NDArray(int[] shape) { super(shape); } /** * Creates a new n times m DoubleMatrix. * * @param newRows the number of rows (n) of the new matrix. * @param newColumns the number of columns (m) of the new matrix. * @param ordering */ public NDArray(int newRows, int newColumns, char ordering) { super(newRows, newColumns, ordering); } /** * Create an ndarray from the specified slices. * This will go through and merge all of the * data from each slice in to one ndarray * which will then take the specified shape * * @param slices the slices to merge * @param shape the shape of the ndarray * @param ordering */ public NDArray(List slices, int[] shape, char ordering) { super(slices, shape, ordering); } /** * Create an ndarray from the specified slices. * This will go through and merge all of the * data from each slice in to one ndarray * which will then take the specified shape * * @param slices the slices to merge * @param shape the shape of the ndarray * @param stride * @param ordering */ public NDArray(List slices, int[] shape, int[] stride, char ordering) { super(slices, shape, stride, ordering); } public NDArray(float[] data, int[] shape, int[] stride, char ordering) { super(data, shape, stride, ordering); } public NDArray(float[] data, int[] shape, int[] stride, int offset, char ordering) { super(data, shape, stride, offset, ordering); } /** * Create this ndarray with the given data and shape and 0 offset * * @param data the data to use * @param shape the shape of the ndarray */ public NDArray(float[] data, int[] shape) { super(data, shape); } public NDArray(float[] data, int[] shape, int offset) { super(data, shape, offset); } /** * Construct an ndarray of the specified shape * with an empty data array * * @param shape the shape of the ndarray * @param stride the stride of the ndarray * @param offset the desired offset */ public NDArray(int[] shape, int[] stride, int offset) { super(shape, stride, offset); } /** * Create the ndarray with * the specified shape and stride and an offset of 0 * * @param shape the shape of the ndarray * @param stride the stride of the ndarray */ public NDArray(int[] shape, int[] stride) { super(shape, stride); } public NDArray(int[] shape, int offset) { super(shape, offset); } public NDArray(int[] shape, char ordering) { super(shape, ordering); } /** * Creates a new n times m DoubleMatrix. * * @param newRows the number of rows (n) of the new matrix. * @param newColumns the number of columns (m) of the new matrix. */ public NDArray(int newRows, int newColumns) { super(newRows, newColumns); } /** * Create an ndarray from the specified slices. * This will go through and merge all of the * data from each slice in to one ndarray * which will then take the specified shape * * @param slices the slices to merge * @param shape the shape of the ndarray */ public NDArray(List slices, int[] shape) { super(slices, shape); } /** * Create an ndarray from the specified slices. * This will go through and merge all of the * data from each slice in to one ndarray * which will then take the specified shape * * @param slices the slices to merge * @param shape the shape of the ndarray * @param stride */ public NDArray(List slices, int[] shape, int[] stride) { super(slices, shape, stride); } public NDArray(float[] data, int[] shape, int[] stride) { super(data, shape, stride); } public NDArray(float[] data, int[] shape, int[] stride, int offset) { super(data, shape, stride, offset); } public NDArray(float[] data) { super(data); } public NDArray(double[] data, int[] shape, int[] stride, int offset) { super(data,shape,stride,offset); } public NDArray(float[][] floats) { super(floats); } public NDArray(float[][] data, char ordering) { super(data, ordering); } public NDArray(DataBuffer data, int[] shape, int[] stride, int offset) { super(data, shape, stride, offset); } public NDArray(int[] data, int[] shape, int[] strides) { super(data, shape, strides); } public NDArray(DataBuffer data, int[] shape) { super(data, shape); } public NDArray(DataBuffer buffer, int[] shape, int offset) { super(buffer, shape, offset); } public NDArray(DataBuffer buffer, int[] shape, char ordering) { super(buffer, shape, ordering); } public NDArray(double[] data, int[] shape, char ordering) { super(data, shape, ordering); } public NDArray(double[] data, int[] shape, int[] stride, int offset, char ordering) { super(data, shape, stride, offset, ordering); } public NDArray(float[] data, char order) { super(data, order); } public NDArray(FloatBuffer floatBuffer, char order) { super(floatBuffer, order); } public NDArray(DataBuffer buffer, int[] shape, int[] strides) { super(buffer, shape, strides); } public NDArray(DoubleBuffer buffer, int[] shape, char ordering) { super(buffer, shape, 0,ordering); } public NDArray(DoubleBuffer buffer, int[] shape, int offset) { super(buffer, shape, offset); } public NDArray(int[] shape, DataBuffer buffer) { super(shape,buffer); } private Object writeReplace() throws java.io.ObjectStreamException { return new BaseNDArrayProxy(this); } /** * This method does direct array copy. Impossible to use on views or mixed orders. * * PLEASE NOTE: YOU SHOULD NEVER USE THIS METHOD, UNLESS YOU 100% CLEAR ABOUT IT * * @return */ @Override public synchronized INDArray unsafeDuplication() { INDArray ret = Nd4j.createUninitialized(this.shape(), this.ordering()); Pointer.memcpy(ret.data().addressPointer(), this.data().addressPointer(), this.data().length() * this.data().getElementSize()); return ret; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy