Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.nd4j.linalg.cpu.nativecpu.ops.NativeOpExecutioner Maven / Gradle / Ivy
package org.nd4j.linalg.cpu.nativecpu.ops;
import lombok.Data;
import lombok.Getter;
import lombok.NonNull;
import lombok.extern.slf4j.Slf4j;
import org.nd4j.linalg.primitives.Pair;
import org.bytedeco.javacpp.*;
import org.nd4j.compression.impl.AbstractCompressor;
import org.nd4j.linalg.api.buffer.DataBuffer;
import org.nd4j.linalg.api.complex.IComplexNDArray;
import org.nd4j.linalg.api.concurrency.AffinityManager;
import org.nd4j.linalg.api.environment.Nd4jEnvironment;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.*;
import org.nd4j.linalg.api.ops.aggregates.Aggregate;
import org.nd4j.linalg.api.ops.aggregates.Batch;
import org.nd4j.linalg.api.ops.executioner.DefaultOpExecutioner;
import org.nd4j.linalg.api.ops.impl.accum.MatchCondition;
import org.nd4j.linalg.api.ops.impl.accum.Variance;
import org.nd4j.linalg.api.ops.impl.transforms.convolution.Pooling2D;
import org.nd4j.linalg.api.rng.Random;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.cache.ConstantHandler;
import org.nd4j.linalg.cache.TADManager;
import org.nd4j.linalg.compression.CompressedDataBuffer;
import org.nd4j.linalg.compression.CompressionDescriptor;
import org.nd4j.linalg.compression.CompressionType;
import org.nd4j.linalg.compression.ThresholdCompression;
import org.nd4j.linalg.cpu.nativecpu.CpuTADManager;
import org.nd4j.linalg.exception.ND4JIllegalStateException;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.conditions.Conditions;
import org.nd4j.linalg.util.ArrayUtil;
import org.nd4j.nativeblas.LongPointerWrapper;
import org.nd4j.nativeblas.NativeOps;
import org.nd4j.nativeblas.NativeOpsHolder;
import org.nd4j.nativeblas.Nd4jBlas;
import java.util.*;
/**
*
* Native operation
* executioner in c++
*
* @author Adam Gibson
*/
@Slf4j
public class NativeOpExecutioner extends DefaultOpExecutioner {
private NativeOps loop = NativeOpsHolder.getInstance().getDeviceNativeOps();
private ConstantHandler constantHandler = Nd4j.getConstantHandler();
@Getter
private CpuTADManager tadManager = new CpuTADManager();
private static final String DEBUG_ENABLED = "ND4J_DEBUG";
private static final String VERBOSE = "ND4J_VERBOSE";
protected ThreadLocal extraz = new ThreadLocal<>();
/**
* Instead of allocating new memory chunks for each batch invocation, we reuse them on thread/opNum basis
* Since for NativeOpExecutioner all executions are synchronous
*/
private ThreadLocal> batchPointers = new ThreadLocal<>();
private ThreadLocal> memoryBlocks = new ThreadLocal<>();
public NativeOpExecutioner() {
tadManager.init(loop, constantHandler);
Map env = System.getenv();
if (env.containsKey(DEBUG_ENABLED)) {
try {
boolean var = Boolean.parseBoolean(env.get(DEBUG_ENABLED));
loop.enableDebugMode(var);
} catch (Exception e) {
log.error("Can't parse {}: [{}]", DEBUG_ENABLED, env.get(DEBUG_ENABLED));
}
}
if (env.containsKey(VERBOSE)) {
try {
boolean var = Boolean.parseBoolean(env.get(VERBOSE));
loop.enableVerboseMode(var);
} catch (Exception e) {
log.error("Can't parse {}: [{}]", VERBOSE, env.get(VERBOSE));
}
}
}
@Override
public Op exec(Op op) {
checkForCompression(op);
if (op instanceof ScalarOp) {
ScalarOp s = (ScalarOp) op;
exec(s);
} else if (op instanceof TransformOp) {
TransformOp t = (TransformOp) op;
exec(t);
} else if (op instanceof Accumulation) {
Accumulation ac = (Accumulation) op;
exec(ac);
} else if (op instanceof IndexAccumulation) {
IndexAccumulation iac = (IndexAccumulation) op;
exec(iac); //Currently using DefaultOpExecutioner
} else if (op instanceof BroadcastOp) {
BroadcastOp broadcastOp = (BroadcastOp) op;
exec(broadcastOp, broadcastOp.getDimension());
}
return op;
}
@Override
public INDArray exec(IndexAccumulation op, int... dimension) {
if (dimension == null || dimension.length == 0)
dimension = new int[] {Integer.MAX_VALUE};
checkForCompression(op);
validateDataType(Nd4j.dataType(), op);
if (extraz.get() == null)
extraz.set(new PointerPointer(32));
Arrays.sort(dimension);
for (int i = 0; i < dimension.length; i++) {
if (dimension[i] < 0)
dimension[i] += op.x().rank();
}
//do op along all dimensions
if (dimension.length == op.x().rank())
dimension = new int[] {Integer.MAX_VALUE};
int[] retShape = Shape.wholeArrayDimension(dimension) ? new int[] {1, 1}
: ArrayUtil.removeIndex(op.x().shape(), dimension);
// This is obviously wrong for IndexReduce, op.x has no real value as return
// if(op.x().isVector() && op.x().length() == ArrayUtil.prod(retShape))
// return op.x();
//ensure vector is proper shape
if (retShape.length == 1) {
if (dimension[0] == 0)
retShape = new int[] {1, retShape[0]};
else
retShape = new int[] {retShape[0], 1};
} else if (retShape.length == 0) {
retShape = new int[] {1, 1};
}
INDArray ret;
if (op.x().data().dataType() == DataBuffer.Type.DOUBLE)
ret = Nd4j.valueArrayOf(retShape, op.zeroDouble());
else
ret = Nd4j.valueArrayOf(retShape, op.zeroFloat());
op.setZ(ret);
//do op along all dimensions
if (dimension.length == op.x().rank())
dimension = new int[] {Integer.MAX_VALUE};
Pointer dimensionAddress = constantHandler.getConstantBuffer(dimension).addressPointer();
Pair tadBuffers = tadManager.getTADOnlyShapeInfo(op.x(), dimension);
Pointer hostTadShapeInfo = tadBuffers.getFirst().addressPointer();
DataBuffer offsets = tadBuffers.getSecond();
Pointer hostTadOffsets = offsets == null ? null : offsets.addressPointer();
PointerPointer dummy = extraz.get().put(hostTadShapeInfo, hostTadOffsets);
long st = profilingHookIn(op, tadBuffers.getFirst());
Pointer x = op.x().data().addressPointer();
Pointer z = op.z().data().addressPointer();
if (op.x().data().dataType() == DataBuffer.Type.DOUBLE) {
if (op.z().isScalar()) {
int res = (int) loop.execIndexReduceScalarDouble(dummy, op.opNum(),
(DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op));
op.setFinalResult(res);
op.z().putScalar(0, (float) res);
} else {
loop.execIndexReduceDouble(dummy, op.opNum(), (DoublePointer) x,
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op), (DoublePointer) z,
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(IntPointer) dimensionAddress, dimension.length);
}
} else {
if (op.z().isScalar()) {
int res = (int) loop.execIndexReduceScalarFloat(dummy, op.opNum(),
(FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op));
op.setFinalResult(res);
op.z().putScalar(0, (float) res);
} else {
loop.execIndexReduceFloat(dummy, op.opNum(), (FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op),
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(IntPointer) dimensionAddress, dimension.length);
}
}
profilingHookOut(op, st);
return op.z();
}
@Override
public INDArray exec(Accumulation op, int... dimension) {
Arrays.sort(dimension);
validateDataType(Nd4j.dataType(), op);
if (extraz.get() == null)
extraz.set(new PointerPointer(32));
for (int i = 0; i < dimension.length; i++)
if (dimension[i] >= op.x().rank() && dimension[i] != Integer.MAX_VALUE)
throw new ND4JIllegalStateException("Op target dimension " + Arrays.toString(dimension)
+ " contains element that higher then rank of op.X: [" + op.x().rank() + "]");
for (int i = 0; i < dimension.length; i++) {
if (dimension[i] < 0)
dimension[i] += op.x().rank();
}
//do op along all dimensions
if (dimension.length == op.x().rank())
dimension = new int[] {Integer.MAX_VALUE};
int[] retShape;
if (Shape.wholeArrayDimension(dimension))
retShape = new int[] {1, 1};
else
retShape = ArrayUtil.removeIndex(op.x().shape(), dimension);
//ensure vector is proper shape
if (retShape.length == 1) {
if (dimension[0] == 0)
retShape = new int[] {1, retShape[0]};
else
retShape = new int[] {retShape[0], 1};
} else if (retShape.length == 0) {
retShape = new int[] {1, 1};
}
if (op.x().isVector() && op.x().length() == ArrayUtil.prod(retShape) && ArrayUtil.prodLong(retShape) > 1 && op.y() == null)
return op.noOp();
/**
* This is the result array.
* We create it only if we hadn't provided it before
*/
INDArray ret;
if (op.z() == null || op.z() == op.x()) {
if (op.isComplexAccumulation()) {
int xT = op.x().tensorssAlongDimension(dimension);
int yT = op.y().tensorssAlongDimension(dimension);
ret = Nd4j.create(xT, yT);
} else {
if (op.x().data().dataType() == DataBuffer.Type.DOUBLE)
ret = Nd4j.valueArrayOf(retShape, op.zeroDouble());
else
ret = Nd4j.valueArrayOf(retShape, op.zeroFloat());
}
op.setZ(ret);
} else {
// compare length
if (!op.isComplexAccumulation() && op.z().lengthLong() != ArrayUtil.prodLong(retShape))
throw new ND4JIllegalStateException("Shape of target array for reduction [" + Arrays.toString(op.z().shape()) + "] doesn't match expected [" + Arrays.toString(retShape) + "]");
else if (op.isComplexAccumulation()) {
int xT = op.x().tensorssAlongDimension(dimension);
int yT = op.y().tensorssAlongDimension(dimension);
if (op.z().lengthLong() != xT * yT)
throw new ND4JIllegalStateException("Shape of target array for reduction [" + Arrays.toString(op.z().shape()) + "] doesn't match expected [" + (xT * yT) + "]");
}
if (op.x().data().dataType() == DataBuffer.Type.DOUBLE) {
op.z().assign(op.zeroDouble());
} else {
op.z().assign(op.zeroFloat());
}
ret = op.z();
}
/**
* Returns the {@link Shape#createShapeInformation(int[], int[], int, int, char)}
* and the associated offsets for each {@link INDArray#tensorAlongDimension(int, int...)}
* The first item is the shape information. The second one is the offsets.
*/
Pair tadBuffers = tadManager.getTADOnlyShapeInfo(op.x(), dimension);
Pair yTadBuffers = null;
/**
* Note that we use addresses in libnd4j.
* We use reinterpret cast in c to take the long
* we pass to JNI. This manages overhead.
*/
Pointer hostTadShapeInfo = tadBuffers.getFirst().addressPointer();
DataBuffer offsets = tadBuffers.getSecond();
Pointer hostTadOffsets = offsets == null ? null : offsets.addressPointer();
// we're going to check, if that's TAD vs TAD comparison or TAD vs full array. if later - we're going slightly different route
boolean tvf = false;
if (op.y() != null) {
if (op.x().tensorAlongDimension(0, dimension).lengthLong() == op.y().lengthLong()) {
tvf = true;
} else if (op.y().lengthLong() != op.x().lengthLong()) {
if (!op.isComplexAccumulation())
throw new ND4JIllegalStateException("Op.X [" + op.x().lengthLong() + "] and Op.Y [" + op.y().lengthLong() + "] lengths should match");
}
}
if (op.isComplexAccumulation()) {
yTadBuffers = tadManager.getTADOnlyShapeInfo(op.y(), dimension);
if (op.x().tensorAlongDimension(0, dimension).lengthLong() != op.y().tensorAlongDimension(0, dimension).lengthLong())
throw new ND4JIllegalStateException("Impossible to issue AllDistances operation: TAD lengths mismatch along given dimension");
}
/**
* This is a pointer to a pointer in c.
*/
// FIXME: we need something better then 3rd element being non-null here...
PointerPointer dummy = extraz.get().put(hostTadShapeInfo, hostTadOffsets, tvf ? hostTadOffsets : null);
long st = profilingHookIn(op, tadBuffers.getFirst());
/**
* Note because dimension arrays don't change,
* we use an {@link ConstantHandler} which knows how to reserve memory
* for immutable buffers for the dimensions.
* This gives us a pointer which is passed around in libnd4j.
*/
Pointer dimensionAddress = constantHandler.getConstantBuffer(dimension).addressPointer();
if (op.x().data().dataType() == DataBuffer.Type.DOUBLE) {
if (op instanceof Variance) {
if (ret.isScalar()) {
ret.putScalar(0, loop.execSummaryStatsScalarDouble(dummy, op.opNum(),
(DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op), true));
} else {
Variance var = (Variance) op;
loop.execSummaryStatsDouble(dummy, op.opNum(), (DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op),
(DoublePointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(IntPointer) dimensionAddress, dimension.length, var.isBiasCorrected());
}
}
//pairwise reduction like similarity of two arrays
else if (op.y() != null) {
if (op.isComplexAccumulation()) {
loop.execReduce3AllDouble(dummy, op.opNum(), (DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op),
(DoublePointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(IntPointer) dimensionAddress, dimension.length,
(IntPointer) tadBuffers.getFirst().addressPointer(),
new LongPointerWrapper(tadBuffers.getSecond().addressPointer()),
(IntPointer) yTadBuffers.getFirst().addressPointer(),
new LongPointerWrapper(yTadBuffers.getSecond().addressPointer())
);
} else if (ret.isScalar()) {
ret.putScalar(0, loop.execReduce3ScalarDouble(dummy, op.opNum(),
(DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op),
(DoublePointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer()));
} else {
loop.execReduce3Double(dummy, op.opNum(), (DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op),
(DoublePointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(IntPointer) dimensionAddress, dimension.length);
}
} else {
if (ret.isScalar()) {
ret.putScalar(0, loop.execReduceScalarDouble(dummy, op.opNum(),
(DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op)));
} else {
loop.execReduceDouble(dummy, op.opNum(), (DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op),
(DoublePointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(IntPointer) dimensionAddress, dimension.length);
}
}
} else {
if (op instanceof Variance) {
Variance variance = (Variance) op;
if (ret.isScalar()) {
ret.putScalar(0, loop.execSummaryStatsScalarFloat(dummy, op.opNum(),
(FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op), variance.isBiasCorrected()));
} else {
loop.execSummaryStatsFloat(dummy, op.opNum(), (FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op),
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(IntPointer) dimensionAddress, dimension.length, variance.isBiasCorrected());
}
}
else if (op.y() != null) {
if (op.isComplexAccumulation()) {
loop.execReduce3AllFloat(dummy, op.opNum(),
(FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op),
(FloatPointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(IntPointer) dimensionAddress, dimension.length,
(IntPointer) tadBuffers.getFirst().addressPointer(),
new LongPointerWrapper(tadBuffers.getSecond().addressPointer()),
(IntPointer) yTadBuffers.getFirst().addressPointer(),
new LongPointerWrapper(yTadBuffers.getSecond().addressPointer())
);
} else if (ret.isScalar()) {
ret.putScalar(0, loop.execReduce3ScalarFloat(dummy, op.opNum(),
(FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op),
(FloatPointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer()));
} else {
loop.execReduce3Float(dummy, op.opNum(), (FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op),
(FloatPointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(IntPointer) dimensionAddress, dimension.length);
}
} else {
if (ret.isScalar()) {
ret.putScalar(0, loop.execReduceScalarFloat(dummy, op.opNum(),
(FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op)));
} else {
loop.execReduceFloat(dummy, op.opNum(), (FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op),
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(IntPointer) dimensionAddress, dimension.length);
}
}
}
return ret;
}
/**
* ScalarOp along dimension
* @param op
* @param dimension
*/
private void invoke(ScalarOp op, int[] dimension) {
Arrays.sort(dimension);
// do tad magic
/**
* Returns the {@link Shape#createShapeInformation(int[], int[], int, int, char)}
* and the associated offsets for each {@link INDArray#tensorAlongDimension(int, int...)}
* The first item is the shape information. The second one is the offsets.
*/
Pair tadBuffers = tadManager.getTADOnlyShapeInfo(op.x(), dimension);
Pointer hostTadShapeInfo = tadBuffers.getFirst().addressPointer();
Pointer hostTadOffsets = tadBuffers.getSecond().addressPointer();
Pointer devTadShapeInfoZ = null;
Pointer devTadOffsetsZ = null;
/**
* Returns the {@link Shape#createShapeInformation(int[], int[], int, int, char)}
* and the associated offsets for each {@link INDArray#tensorAlongDimension(int, int...)}
* The first item is the shape information. The second one is the offsets.
*
* Note that this is the *result* TAD information. An op is always input (x) and output (z)
* for result.
* This is for assigning the result to of the operation along
* the proper dimension.
*/
Pair tadBuffersZ = tadManager.getTADOnlyShapeInfo(op.z(), dimension);
devTadShapeInfoZ = tadBuffersZ.getFirst().addressPointer();
devTadOffsetsZ = tadBuffersZ.getSecond().addressPointer();
if (extraz.get() == null)
extraz.set(new PointerPointer(32));
PointerPointer dummy = extraz.get().put(hostTadShapeInfo, hostTadOffsets, devTadShapeInfoZ, devTadOffsetsZ);
if (op.x().data().dataType() == DataBuffer.Type.FLOAT) {
loop.execScalarFloat(dummy, op.opNum(), (FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.y().data().addressPointer(), (FloatPointer) getPointerForExtraArgs(op),
(IntPointer) Nd4j.getConstantHandler().getConstantBuffer(dimension).addressPointer(), dimension.length);
} else if (op.x().data().dataType() == DataBuffer.Type.DOUBLE) {
loop.execScalarDouble(dummy, op.opNum(), (DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.y().data().addressPointer(), (DoublePointer) getPointerForExtraArgs(op),
(IntPointer) Nd4j.getConstantHandler().getConstantBuffer(dimension).addressPointer(), dimension.length);
}
}
private void exec(ScalarOp op) {
if (op.x() instanceof IComplexNDArray || executionMode() == ExecutionMode.JAVA) {
super.exec(op);
} else {
long st = profilingHookIn(op);
validateDataType(Nd4j.dataType(), op);
if (op.x().lengthLong() != op.z().lengthLong())
throw new ND4JIllegalStateException("op.X length should be equal to op.Y length: ["
+ Arrays.toString(op.x().shapeInfoDataBuffer().asInt()) + "] != ["
+ Arrays.toString(op.z().shapeInfoDataBuffer().asInt()) + "]");
if (op.getDimension() != null) {
invoke(op, op.getDimension());
return;
}
if (op.x().data().dataType() == DataBuffer.Type.DOUBLE) {
if (op.x().elementWiseStride() >= 1 && !op.isExecSpecial() && op.z().elementWiseStride() >= 1
&& !op.isExecSpecial()) {
loop.execScalarDouble(null, op.opNum(), (DoublePointer) op.x().data().addressPointer(),
op.x().elementWiseStride(), (DoublePointer) op.z().data().addressPointer(),
op.z().elementWiseStride(), op.scalar().doubleValue(),
(DoublePointer) getPointerForExtraArgs(op), op.n());
} else
loop.execScalarDouble(null,
op.opNum(),
(DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
op.scalar().doubleValue(),
(DoublePointer) getPointerForExtraArgs(op));
} else {
if (op.x().elementWiseStride() >= 1 && !op.isExecSpecial() && op.z().elementWiseStride() >= 1
&& !op.isExecSpecial()) {
loop.execScalarFloat(null, op.opNum(), (FloatPointer) op.x().data().addressPointer(),
op.x().elementWiseStride(), (FloatPointer) op.z().data().addressPointer(),
op.z().elementWiseStride(), op.scalar().floatValue(),
(FloatPointer) getPointerForExtraArgs(op), op.n());
} else
loop.execScalarFloat(null, op.opNum(), (FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
op.scalar().floatValue(), (FloatPointer) getPointerForExtraArgs(op));
}
profilingHookOut(op, st);
}
}
private Pointer getPointerForExtraArgs(Op op) {
if (op.extraArgs() != null)
return op.extraArgsDataBuff().addressPointer();
return null;
}
private void exec(TransformOp op) {
long st = 0;
validateDataType(Nd4j.dataType(), op);
if (extraz.get() == null)
extraz.set(new PointerPointer(32));
PointerPointer dummy = extraz.get();
/**
* This is the {@link org.nd4j.linalg.api.ops.impl.transforms.IsMax}
* operation.
*
* @see {@link Op#extraArgs()}
* for what an extra argument is in an op.
*
* The extra argument in the op here is the {@link org.nd4j.linalg.api.ops.impl.transforms.IsMax#IsMax(INDArray, int...)}
* dimension to do the ismax along
*/
if (op.opNum() == 41 && op.extraArgs() != null) {
int[] dimension = new int[(int) op.extraArgs()[0]];
for (int i = 0; i < dimension.length; i++) {
dimension[i] = (int) op.extraArgs()[i + 1];
}
/**
* Returns the {@link Shape#createShapeInformation(int[], int[], int, int, char)}
* and the associated offsets for each {@link INDArray#tensorAlongDimension(int, int...)}
* The first item is the shape information. The second one is the offsets.
*/
Pair tadBuffers = tadManager.getTADOnlyShapeInfo(op.z(), dimension);
Pointer tad = tadBuffers.getFirst().addressPointer();
DataBuffer offsets = tadBuffers.getSecond();
Pointer off = offsets == null ? null : offsets.addressPointer();
dummy.put(0, tad);
dummy.put(1, off);
st = profilingHookIn(op, tadBuffers.getFirst());
} else
st = profilingHookIn(op);
// Pooling2D requires additional pointer
if (op.opNum() == 71) {
dummy.put(0, ((Pooling2D) op).getIm2colShape().addressPointer());
}
if (op.x().data().dataType() == DataBuffer.Type.DOUBLE) {
if (op.y() != null) {
int xEWS = op.x().elementWiseStride();
int yEWS = op.y().elementWiseStride();
int zEWS = op.z().elementWiseStride();
boolean xRow = op.x().isRowVector();
boolean yRow = op.y().isRowVector();
boolean zRow = op.z().isRowVector();
if ((xEWS >= 1 && yEWS >= 1
&& xEWS == yEWS && !op.isExecSpecial()
&& op.x().ordering() == op.y().ordering() && op.x().ordering() == op.z().ordering()) || (xEWS >= 1 && yEWS == xEWS && zEWS == xEWS && xRow && yRow && zRow)) {
loop.execPairwiseTransformDouble(dummy, op.opNum(), (DoublePointer) op.x().data().addressPointer(),
xEWS, (DoublePointer) op.y().data().addressPointer(),
yEWS, (DoublePointer) op.z().data().addressPointer(),
zEWS, (DoublePointer) getPointerForExtraArgs(op), op.n());
} else {
loop.execPairwiseTransformDouble(dummy, op.opNum(), (DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op));
}
} else {
if (op.x().elementWiseStride() >= 1 && !op.isExecSpecial() && !op.isExecSpecial()
&& op.x().ordering() == op.z().ordering()) {
loop.execTransformDouble(dummy, op.opNum(), (DoublePointer) op.x().data().addressPointer(),
op.x().elementWiseStride(), (DoublePointer) op.z().data().addressPointer(),
op.z().elementWiseStride(), (DoublePointer) getPointerForExtraArgs(op), op.n());
} else {
loop.execTransformDouble(dummy, op.opNum(), (DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op));
}
}
} else {
if (op.y() != null) {
int xEWS = op.x().elementWiseStride();
int yEWS = op.y().elementWiseStride();
int zEWS = op.z().elementWiseStride();
boolean xRow = op.x().isRowVector();
boolean yRow = op.y().isRowVector();
boolean zRow = op.z().isRowVector();
if ((xEWS >= 1 && yEWS >= 1
&& xEWS == yEWS && !op.isExecSpecial()
&& op.x().ordering() == op.y().ordering() && op.x().ordering() == op.z().ordering()) || (xEWS >= 1 && yEWS == xEWS && zEWS == xEWS && xRow && yRow && zRow)) {
loop.execPairwiseTransformFloat(dummy, op.opNum(), (FloatPointer) op.x().data().addressPointer(),
xEWS, (FloatPointer) op.y().data().addressPointer(),
yEWS, (FloatPointer) op.z().data().addressPointer(),
zEWS, (FloatPointer) getPointerForExtraArgs(op), op.n());
} else {
loop.execPairwiseTransformFloat(dummy, op.opNum(), (FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op));
}
} else {
if (op.x().elementWiseStride() >= 1 && !op.isExecSpecial() && op.x().ordering() == op.z().ordering()) {
loop.execTransformFloat(dummy, op.opNum(), (FloatPointer) op.x().data().addressPointer(),
op.x().elementWiseStride(), (FloatPointer) op.z().data().addressPointer(),
op.z().elementWiseStride(), (FloatPointer) getPointerForExtraArgs(op), op.n());
} else {
loop.execTransformFloat(dummy, op.opNum(), (FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op));
}
}
}
profilingHookOut(op, st);
}
@Override
public INDArray exec(BroadcastOp op, int... dimension) {
long st = profilingHookIn(op);
Arrays.sort(dimension);
validateDataType(Nd4j.dataType(), op);
for (int i = 0; i < dimension.length; i++)
if (dimension[i] >= op.x().rank() && dimension[i] != Integer.MAX_VALUE)
throw new ND4JIllegalStateException("Op target dimension " + Arrays.toString(dimension)
+ " contains element that higher then rank of op.X: [" + op.x().rank() + "]");
/**
* Returns the {@link Shape#createShapeInformation(int[], int[], int, int, char)}
* and the associated offsets for each {@link INDArray#tensorAlongDimension(int, int...)}
* The first item is the shape information. The second one is the offsets.
*/
Pair tadBuffers = tadManager.getTADOnlyShapeInfo(op.x(), dimension);
Pointer hostTadShapeInfo = tadBuffers.getFirst().addressPointer();
Pointer hostTadOffsets = tadBuffers.getSecond().addressPointer();
Pointer devTadShapeInfoZ = null;
Pointer devTadOffsetsZ = null;
// if (!Arrays.equals(op.x().shape(),op.z().shape()) || !Arrays.equals(op.x().stride(),op.z().stride()) || op.x().ordering() != op.z().ordering()) {
// that's the place where we're going to have second TAD in place
Pair tadBuffersZ = tadManager.getTADOnlyShapeInfo(op.z(), dimension);
devTadShapeInfoZ = tadBuffersZ.getFirst().addressPointer();
devTadOffsetsZ = tadBuffersZ.getSecond().addressPointer();
/*
log.info("Broascast dimension: {}", Arrays.toString(dimension));
log.info("x shape: {}; x TAD: {}; comp TAD: {}", Arrays.toString(op.x().shapeInfoDataBuffer().asInt()), Arrays.toString(tadBuffers.getFirst().asInt()), Arrays.toString(op.x().tensorAlongDimension(0, dimension).shapeInfoDataBuffer().asInt()));
log.info("z shape: {}; z TAD: {}", Arrays.toString(op.z().shapeInfoDataBuffer().asInt()), Arrays.toString(tadBuffersZ.getFirst().asInt()));
log.info("y shape: {}", Arrays.toString(op.y().shapeInfoDataBuffer().asInt()));
log.info("-------------");
*/
if (extraz.get() == null)
extraz.set(new PointerPointer(32));
PointerPointer dummy = extraz.get().put(hostTadShapeInfo, hostTadOffsets, devTadShapeInfoZ, devTadOffsetsZ);
Pointer dimensionAddress = constantHandler.getConstantBuffer(dimension).addressPointer();
if (op.x().data().dataType() == DataBuffer.Type.DOUBLE) {
loop.execBroadcastDouble(dummy, op.opNum(), (DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(), (IntPointer) dimensionAddress,
dimension.length);
} else {
loop.execBroadcastFloat(dummy, op.opNum(), (FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(), (IntPointer) dimensionAddress,
dimension.length);
}
return op.z();
}
private void exec(IndexAccumulation op) {
if (op.x() instanceof IComplexNDArray || executionMode() == ExecutionMode.JAVA) {
super.exec(op);
} else {
if(op.z() == op.x()) {
op.setZ(Nd4j.scalar(0.0));
}
long st = profilingHookIn(op);
validateDataType(Nd4j.dataType(), op);
if (op.x().data().dataType() == DataBuffer.Type.DOUBLE) {
op.setFinalResult((int) loop.execIndexReduceScalarDouble(null, op.opNum(),
(DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op)));
} else {
op.setFinalResult((int) loop.execIndexReduceScalarFloat(null, op.opNum(),
(FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op)));
}
op.z().assign(op.getFinalResult());
profilingHookOut(op, st);
}
}
private void exec(Accumulation op) {
if (op.x() instanceof IComplexNDArray || executionMode() == ExecutionMode.JAVA) {
super.exec(op);
}
else if(op.isExecSpecial()) {
op.exec();
}
else {
long st = profilingHookIn(op);
validateDataType(Nd4j.dataType(), op);
if(op.z() == op.x()) {
op.setZ(Nd4j.scalar(0.0));
}
if (op.x().data().dataType() == DataBuffer.Type.DOUBLE) {
if (op instanceof Variance) {
op.setFinalResult(loop.execSummaryStatsScalarDouble(null, op.opNum(),
(DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op), true));
} else if (op.y() != null) {
op.setFinalResult(loop.execReduce3ScalarDouble(null, op.opNum(),
(DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op),
(DoublePointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer()));
} else {
op.setFinalResult(loop.execReduceScalarDouble(null, op.opNum(),
(DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) getPointerForExtraArgs(op)));
}
} else {
if (op instanceof Variance) {
Variance variance = (Variance) op;
op.setFinalResult(loop.execSummaryStatsScalarFloat(null, op.opNum(),
(FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op), variance.isBiasCorrected()));
} else if (op.y() != null) {
op.setFinalResult(loop.execReduce3ScalarFloat(null, op.opNum(),
(FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op),
(FloatPointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer()));
} else {
op.setFinalResult(loop.execReduceScalarFloat(null, op.opNum(),
(FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) getPointerForExtraArgs(op)));
}
}
op.z().assign(op.getFinalResult());
profilingHookOut(op, st);
}
}
protected Pointer getPointer(Batch batch) {
if (batchPointers.get() == null)
batchPointers.set(new HashMap());
if (!batchPointers.get().containsKey(batch.opNum())) {
IntPointer pointer = new IntPointer(batch.getSample().getRequiredBatchMemorySize() / 4);
batchPointers.get().put(batch.opNum(), pointer);
return pointer;
}
return batchPointers.get().get(batch.opNum());
}
/**
* This method executes previously built batch
*
* @param batch
*/
@Override
public void exec(Batch batch) {
//profilingHookIn(batch);
IntPointer pointer = (IntPointer) getPointer(batch);
int maxTypes = 5;
int maxIntArrays = batch.getSample().maxIntArrays();
int maxArraySize = batch.getSample().maxIntArraySize();
int indexPos = maxTypes * Batch.getBatchLimit();
int intArraysPos = indexPos + (batch.getSample().maxIndexArguments() * Batch.getBatchLimit());
int realPos = (intArraysPos + (maxIntArrays * maxArraySize * Batch.getBatchLimit()))
/ (Nd4j.dataType() == DataBuffer.Type.DOUBLE ? 2 : 1);
int argsPos = (realPos + ((batch.getSample().maxRealArguments() * Batch.getBatchLimit())))
/ (Nd4j.dataType() == DataBuffer.Type.DOUBLE ? 1 : 2);
int shapesPos = argsPos + (batch.getSample().maxArguments() * Batch.getBatchLimit());
for (int i = 0; i < batch.getNumAggregates(); i++) {
T op = batch.getAggregates().get(i);
// put num arguments
int idx = i * maxTypes;
pointer.put(idx, op.getArguments().size());
pointer.put(idx + 1, op.getShapes().size());
pointer.put(idx + 2, op.getIndexingArguments().size());
pointer.put(idx + 3, op.getRealArguments().size());
pointer.put(idx + 4, op.getIntArrayArguments().size());
// putting indexing arguments
for (int e = 0; e < op.getIndexingArguments().size(); e++) {
idx = indexPos + i * batch.getSample().maxIndexArguments();
pointer.put(idx + e, op.getIndexingArguments().get(e));
}
// putting intArray values
int bsize = maxIntArrays * maxArraySize;
for (int e = 0; e < op.getIntArrayArguments().size(); e++) {
int step = (i * bsize) + (e * maxArraySize);
if (op.getIntArrayArguments().get(e) != null)
for (int x = 0; x < op.getIntArrayArguments().get(e).length; x++) {
idx = intArraysPos + step + x;
pointer.put(idx, op.getIntArrayArguments().get(e)[x]);
}
}
// TODO: variable datatype should be handled here
// putting real arguments
if (Nd4j.dataType() == DataBuffer.Type.FLOAT) {
FloatPointer fPtr = new FloatPointer(pointer);
for (int e = 0; e < op.getRealArguments().size(); e++) {
idx = realPos + i * op.maxRealArguments();
fPtr.put(idx + e, op.getRealArguments().get(e).floatValue());
}
} else if (Nd4j.dataType() == DataBuffer.Type.DOUBLE) {
DoublePointer dPtr = new DoublePointer(pointer);
for (int e = 0; e < op.getRealArguments().size(); e++) {
idx = realPos + (i * op.maxRealArguments());
dPtr.put(idx + e, op.getRealArguments().get(e).doubleValue());
}
}
if (extraz.get() == null)
extraz.set(new PointerPointer(32));
// putting arguments pointers
PointerPointer ptrPtr = new PointerPointer(pointer);//extraz.get().put(pointer);
for (int e = 0; e < op.getArguments().size(); e++) {
idx = argsPos + i * batch.getSample().maxArguments();
if (op.getArguments().get(e) != null) {
ptrPtr.put(idx + e, op.getArguments().get(e).data().addressPointer());
}
}
// putting shape pointers
for (int e = 0; e < op.getShapes().size(); e++) {
idx = shapesPos + i * batch.getSample().maxShapes();
if (op.getShapes().get(e) != null)
ptrPtr.put(idx + e, op.getShapes().get(e).addressPointer());
}
}
if (Nd4j.dataType() == DataBuffer.Type.FLOAT) {
loop.execAggregateBatchFloat(null, batch.getNumAggregates(), batch.opNum(),
batch.getSample().maxArguments(), batch.getSample().maxShapes(),
batch.getSample().maxIntArrays(), batch.getSample().maxIntArraySize(),
batch.getSample().maxIndexArguments(), batch.getSample().maxRealArguments(), pointer);
} else if (Nd4j.dataType() == DataBuffer.Type.DOUBLE) {
loop.execAggregateBatchDouble(null, batch.getNumAggregates(), batch.opNum(),
batch.getSample().maxArguments(), batch.getSample().maxShapes(),
batch.getSample().maxIntArrays(), batch.getSample().maxIntArraySize(),
batch.getSample().maxIndexArguments(), batch.getSample().maxRealArguments(), pointer);
} else {
throw new UnsupportedOperationException("Half precision isn't supported on CPU");
}
}
/**
* This method takes arbitrary
* sized list of {@link Aggregate},
* and packs them into batches
* Note here that this is mainly used for random number generation
* for {@link RandomOp} and things like {@link org.nd4j.linalg.api.rng.distribution.Distribution}
* @param batch the list of {@link Aggregate} to
* execute upon
*/
@Override
public void exec(List batch) {
if (batch.size() == 0)
return;
List> batches = Batch.getBatches(batch);
for (Batch single : batches) {
this.exec(single);
}
}
/**
* This method takes arbitrary
* sized list of {@link Aggregate},
* and packs them into batches
* Note here that this is mainly used for random number generation
* for {@link RandomOp} and things like {@link org.nd4j.linalg.api.rng.distribution.Distribution}
* @param op the list of {@link Aggregate} to
* execute upon
*/
@Override
public void exec(Aggregate op) {
// long st = profilingHookIn(op);
if (memoryBlocks.get() == null)
memoryBlocks.set(new HashMap());
if (memoryBlocks.get().get(op.opNum()) == null)
memoryBlocks.get().put(op.opNum(), new AggregateMemoryBlock(op));
AggregateMemoryBlock block = memoryBlocks.get().get(op.opNum());
int numArguments = op.getArguments().size();
int numIndexArguments = op.getIndexingArguments().size();
int numRealArguments = op.getRealArguments().size();
int numShapes = op.getShapes().size();
int numIntArrays = op.getIntArrayArguments().size();
PointerPointer arguments = block.getArgumentsPointer(); //new PointerPointer(numArguments);
List pointers = new ArrayList<>();
PointerPointer intArrays = block.getArraysPointer(); //new PointerPointer(numIntArrays);
for (int x = 0; x < numArguments; x++) {
arguments.put(x, op.getArguments().get(x) == null ? null
: op.getArguments().get(x).data().addressPointer());
}
PointerPointer shapes = block.getShapesPointer(); //new PointerPointer(numShapes);
for (int x = 0; x < numShapes; x++) {
if (op.getShapes().get(x).dataType() != DataBuffer.Type.INT)
throw new RuntimeException("ShapeBuffers should have INT data type");
shapes.put(x, op.getShapes().get(x) == null ? null : op.getShapes().get(x).addressPointer());
}
//int[] indexes = new int[numIndexArguments];
IntPointer pointer = block.getIndexingPointer();
for (int x = 0; x < numIndexArguments; x++) {
pointer.put(x, op.getIndexingArguments().get(x));
}
//IntPointer pointer = new IntPointer(indexes);
double[] reals = new double[numRealArguments];
for (int x = 0; x < numRealArguments; x++) {
//reals[x] = op.getRealArguments().get(x).doubleValue();
if (Nd4j.dataType() == DataBuffer.Type.FLOAT)
((FloatPointer) block.getRealArgumentsPointer()).put(x, op.getRealArguments().get(x).floatValue());
else
((DoublePointer) block.getRealArgumentsPointer()).put(x, op.getRealArguments().get(x).doubleValue());
}
for (int x = 0; x < numIntArrays; x++) {
IntPointer intPtr = block.getIntArrays().get(x); //new IntPointer(op.getIntArrayArguments().get(x));
intPtr.put(op.getIntArrayArguments().get(x), 0, op.getIntArrayArguments().get(x).length);
intArrays.put(x, intPtr);
pointers.add(intPtr);
}
//INDArray realsBuffer = Nd4j.create(reals);
if (Nd4j.dataType() == DataBuffer.Type.FLOAT) {
loop.execAggregateFloat(null, op.opNum(), arguments, numArguments, shapes, numShapes, pointer,
numIndexArguments, intArrays, numIntArrays, (FloatPointer) block.getRealArgumentsPointer(),
numRealArguments);
} else if (Nd4j.dataType() == DataBuffer.Type.DOUBLE) {
loop.execAggregateDouble(null, op.opNum(), arguments, numArguments, shapes, numShapes, pointer,
numIndexArguments, intArrays, numIntArrays, (DoublePointer) block.getRealArgumentsPointer(),
numRealArguments);
} else {
throw new UnsupportedOperationException("Half precision isn't supported on CPU");
}
}
/**
* This method return set of key/value and
* key/key/value objects,
* describing current environment
*
* @return
*/
@Override
public Properties getEnvironmentInformation() {
Properties properties = super.getEnvironmentInformation();
properties.put(Nd4jEnvironment.BACKEND_KEY, "CPU");
properties.put(Nd4jEnvironment.OMP_THREADS_KEY, loop.ompGetMaxThreads());
properties.put(Nd4jEnvironment.BLAS_THREADS_KEY, Nd4j.factory().blas().getMaxThreads());
properties.put(Nd4jEnvironment.BLAS_VENDOR_KEY, (Nd4j.factory().blas()).getBlasVendor().toString());
properties.put(Nd4jEnvironment.HOST_FREE_MEMORY_KEY, Pointer.maxBytes() - Pointer.totalBytes());
return properties;
}
/**
* This method executes specified RandomOp using default RNG available via Nd4j.getRandom()
*
* @param op
*/
@Override
public INDArray exec(RandomOp op) {
return exec(op, Nd4j.getRandom());
}
/**
* This method executes specific
* RandomOp against specified RNG
*
* @param op
* @param rng
*/
@Override
public INDArray exec(RandomOp op, Random rng) {
if (rng.getStateBuffer() == null)
throw new IllegalStateException(
"You should use one of NativeRandom classes for NativeOperations execution");
long st = profilingHookIn(op);
validateDataType(Nd4j.dataType(), op);
if (op.x() != null && op.y() != null && op.z() != null) {
// triple arg call
if (Nd4j.dataType() == DataBuffer.Type.FLOAT) {
loop.execRandomFloat(null, op.opNum(), rng.getStatePointer(), // rng state ptr
(FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.extraArgsDataBuff().addressPointer());
} else if (Nd4j.dataType() == DataBuffer.Type.DOUBLE) {
loop.execRandomDouble(null, op.opNum(), rng.getStatePointer(), // rng state ptr
(DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.y().data().addressPointer(),
(IntPointer) op.y().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.extraArgsDataBuff().addressPointer());
}
} else if (op.x() != null && op.z() != null) {
//double arg call
if (Nd4j.dataType() == DataBuffer.Type.FLOAT) {
loop.execRandomFloat(null, op.opNum(), rng.getStatePointer(), // rng state ptr
(FloatPointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.extraArgsDataBuff().addressPointer());
} else if (Nd4j.dataType() == DataBuffer.Type.DOUBLE) {
loop.execRandomDouble(null, op.opNum(), rng.getStatePointer(), // rng state ptr
(DoublePointer) op.x().data().addressPointer(),
(IntPointer) op.x().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.extraArgsDataBuff().addressPointer());
}
} else {
// single arg call
if (Nd4j.dataType() == DataBuffer.Type.FLOAT) {
loop.execRandomFloat(null, op.opNum(), rng.getStatePointer(), // rng state ptr
(FloatPointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(FloatPointer) op.extraArgsDataBuff().addressPointer());
} else if (Nd4j.dataType() == DataBuffer.Type.DOUBLE) {
loop.execRandomDouble(null, op.opNum(), rng.getStatePointer(), // rng state ptr
(DoublePointer) op.z().data().addressPointer(),
(IntPointer) op.z().shapeInfoDataBuffer().addressPointer(),
(DoublePointer) op.extraArgsDataBuff().addressPointer());
}
}
profilingHookOut(op, st);
return op.z();
}
@Override
public TADManager getTADManager() {
return tadManager;
}
/**
* This class holds memory chunks required for single specific Aggregate op.
* Can be used together with ThreadLocal variables
*/
@Data
private static class AggregateMemoryBlock {
private List intArrays = new ArrayList<>();
private IntPointer indexingPointer;
private Pointer realArgumentsPointer;
private PointerPointer shapesPointer;
private PointerPointer argumentsPointer;
private PointerPointer arraysPointer;
private final int opNum;
private AggregateMemoryBlock(@NonNull Aggregate op) {
opNum = op.opNum();
// creating IntArrays
for (int i = 0; i < op.maxIntArrays(); i++) {
intArrays.add(new IntPointer(op.maxIntArraySize()));
}
// allocating chunk for IndexingArguments
indexingPointer = new IntPointer(op.maxIndexArguments());
// allocating chunk for RealArguments
realArgumentsPointer = Nd4j.dataType() == DataBuffer.Type.DOUBLE ? new DoublePointer(op.maxRealArguments())
: new FloatPointer(op.maxRealArguments());
// allocating chunk for shapesPointer
shapesPointer = new PointerPointer(op.maxShapes());
// allocating chunk for argumentsPointer
argumentsPointer = new PointerPointer(op.maxArguments());
// chunk for intArrays
arraysPointer = new PointerPointer(op.maxIntArrays());
}
@Override
public boolean equals(Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
AggregateMemoryBlock that = (AggregateMemoryBlock) o;
return opNum == that.opNum;
}
@Override
public int hashCode() {
return opNum;
}
}
@Override
public INDArray thresholdEncode(INDArray input, double threshold) {
return thresholdEncode(input, threshold, null);
}
@Override
public INDArray thresholdEncode(INDArray input, double threshold, Integer boundary) {
MatchCondition condition = new MatchCondition(input, Conditions.absGreaterThanOrEqual(threshold));
int cntAbs = Nd4j.getExecutioner().exec(condition, Integer.MAX_VALUE).getInt(0);
if (cntAbs < 2)
return null;
if (boundary != null)
cntAbs = Math.min(cntAbs, boundary);
DataBuffer buffer = input.data();
long originalLength = buffer.length() * Nd4j.sizeOfDataType(buffer.dataType());
int compressedLength = cntAbs + 4;
// first 3 elements contain header
DataBuffer encodedBuffer = Nd4j.getMemoryManager().getCurrentWorkspace() == null ? Nd4j.getDataBufferFactory().createInt(4+cntAbs, false) : Nd4j.getDataBufferFactory().createInt(4+cntAbs, false, Nd4j.getMemoryManager().getCurrentWorkspace());
encodedBuffer.put(0, cntAbs);
encodedBuffer.put(1, (int) buffer.length());
encodedBuffer.put(2, Float.floatToIntBits((float) threshold));
// format id
encodedBuffer.put(3, ThresholdCompression.FLEXIBLE_ENCODING);
CompressionDescriptor descriptor = new CompressionDescriptor();
descriptor.setCompressedLength(compressedLength * 4); // sizeOf(INT)
descriptor.setOriginalLength(originalLength);
descriptor.setOriginalElementSize(Nd4j.sizeOfDataType(buffer.dataType()));
descriptor.setNumberOfElements(buffer.length());
descriptor.setCompressionAlgorithm("THRESHOLD");
descriptor.setCompressionType(CompressionType.LOSSLESS);
//CompressedDataBuffer cbuff = new CompressedDataBuffer(pointer, descriptor);
Nd4j.getNDArrayFactory().convertDataEx(AbstractCompressor.getBufferTypeEx(buffer), buffer.addressPointer(), DataBuffer.TypeEx.THRESHOLD, encodedBuffer.addressPointer(), buffer.length());
Nd4j.getAffinityManager().tagLocation(buffer, AffinityManager.Location.HOST);
return Nd4j.createArrayFromShapeBuffer(encodedBuffer, input.shapeInfoDataBuffer());
}
@Override
public INDArray thresholdDecode(INDArray encoded, INDArray target) {
DataBuffer buffer = encoded.data();
if (buffer.dataType() != DataBuffer.Type.INT)
throw new ND4JIllegalStateException("thresholdEncoded array should have dataType of INT");
long compressedLength = buffer.getInt(0);
long originalLength = buffer.getInt(1);
float threshold = buffer.getInt(2);
if (target.lengthLong() != originalLength)
throw new ND4JIllegalStateException("originalLength ["+ originalLength+"] stored in encoded array doesn't match target length ["+ target.lengthLong()+"]");
DataBuffer.TypeEx typeDst = AbstractCompressor.getBufferTypeEx(target.data());
loop.convertTypes(null, DataBuffer.TypeEx.THRESHOLD.ordinal(), buffer.addressPointer(), target.length(), typeDst.ordinal(), target.data().addressPointer());
return target;
}
@Override
public long bitmapEncode(INDArray indArray, INDArray target, double threshold) {
long length = indArray.lengthLong();
long tLen = target.data().length();
if (tLen != (length / 16 + 5))
throw new ND4JIllegalStateException("Length of target array should be " + (length / 16 + 5));
if (target.data().dataType() != DataBuffer.Type.INT)
throw new ND4JIllegalStateException("Target array should have INT dataType");
DataBuffer buffer = target.data();
buffer.put(0, (int) length);
buffer.put(1, (int) length);
buffer.put(2, Float.floatToIntBits((float) threshold));
// format id
buffer.put(3, ThresholdCompression.BITMAP_ENCODING);
long affected = 0;
if (indArray.data().dataType() == DataBuffer.Type.FLOAT) {
affected = loop.encodeBitmapFloat(null, (FloatPointer) indArray.data().addressPointer(), length, (IntPointer) buffer.addressPointer(), (float) threshold);
} else if (indArray.data().dataType() == DataBuffer.Type.DOUBLE) {
affected = loop.encodeBitmapDouble(null, (DoublePointer) indArray.data().addressPointer(), length, (IntPointer) buffer.addressPointer(), (float) threshold);
} else
throw new UnsupportedOperationException("HALF precision isn't supported on CPU yet");
return affected;
}
@Override
public INDArray bitmapDecode(INDArray encoded, INDArray target) {
if (target.data().dataType() == DataBuffer.Type.FLOAT) {
loop.decodeBitmapFloat(null, encoded.data().addressPointer(), target.length(), (FloatPointer) target.data().addressPointer());
}
return target;
}
}